2022届江苏省海安市八校联考中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图是几何体的三视图,该几何体是( )
A.圆锥 B.圆柱 C.三棱柱 D.三棱锥
2.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )
A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
3.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是( )
A.27分钟 B.20分钟 C.13分钟 D.7分钟
4.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( )
A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
5.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
A. B.
C. D.
6.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A. B. C. D.
7.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为( )kg.
A.180 B.200 C.240 D.300
8.下列说法正确的是( )
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
9.把不等式组的解集表示在数轴上,正确的是( )
A. B.
C. D.
10.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )
A.20 B.16 C.12 D.8
二、填空题(本大题共6个小题,每小题3分,共18分)
11.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.
12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
13.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.
14.若关于x的方程有两个不相等的实数根,则实数a的取值范围是______.
15.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.
16.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
18.(8分)计算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.
19.(8分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
20.(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
21.(8分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.
22.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.
23.(12分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.
求抛物线顶点M的坐标;
若点A的坐标为,轴,交抛物线于点B,求点B的坐标;
在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
24.如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
| 甲 | 乙 | 丙 |
单价(元/米2) |
(1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.
详解:∵几何体的主视图和左视图都是长方形,
故该几何体是一个柱体,
又∵俯视图是一个三角形,
故该几何体是一个三棱柱,
故选C.
点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
2、A
【解析】
先将抛物线解析式化为顶点式,左加右减的原则即可.
【详解】
,
当向左平移2个单位长度,再向上平移3个单位长度,得
.
故选A.
【点睛】
本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
3、C
【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.
【详解】
解:设反比例函数关系式为:,将(7,100)代入,得k=700,
∴,
将y=35代入,
解得;
∴水温从100℃降到35℃所用的时间是:20-7=13,
故选C.
【点睛】
本题考查反比例函数的应用,利用数形结合思想解题是关键.
4、C
【解析】
依据科学记数法的含义即可判断.
【详解】
解:48511111=4.85×117,故本题选择C.
【点睛】
把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
(1)当|a|≥1时,n的值为a的整数位数减1;
(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
5、B
【解析】
根据第二象限中点的特征可得: ,
解得: .
在数轴上表示为:
故选B.
考点:(1)、不等式组;(2)、第一象限中点的特征
6、B
【解析】
根据简单概率的计算公式即可得解.
【详解】
一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
故选B.
考点:简单概率计算.
7、B
【解析】
根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
【详解】
解:设小李所进甜瓜的数量为,根据题意得:
,
解得:,
经检验是原方程的解.
答:小李所进甜瓜的数量为200kg.
故选:B.
【点睛】
本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
8、D
【解析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
【详解】
解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
故选D
【点睛】
本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
9、A
【解析】
分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
【详解】
由①,得x≥2,
由②,得x<1,
所以不等式组的解集是:2≤x<1.
不等式组的解集在数轴上表示为:
.
故选A.
【点睛】
本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
10、B
【解析】
首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,
∵AE=EB,
∴OE=BC,
∵AE+EO=4,
∴2AE+2EO=8,
∴AB+BC=8,
∴平行四边形ABCD的周长=2×8=16,
故选:B.
【点睛】
本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握
三角形的中位线定理,属于中考常考题型.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论.
【详解】
设这些书有x本,
由题意得,,
解得:x=1,
答:这些书有1本.
故答案为:1.
【点睛】
本题考查了比例的性质,正确的列出比例式是解题的关键.
12、1
【解析】
∵骑车的学生所占的百分比是×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
13、6.
【解析】
作辅助线,根据反比例函数关系式得:S△AOD=, S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.
【详解】
如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,
∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵点A为函数y=(x>0)的图象上一点,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案为6.
14、a>﹣.
【解析】
试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.
考点:根的判别式.
15、15°、30°、60°、120°、150°、165°
【解析】
分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.
详解:①、∵CD∥AB, ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;
CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°
②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;
CE∥AB时,∠ECB=∠B=60°.
③如图2,DE∥AB时,延长CD交AB于F, 则∠BFC=∠D=45°,
在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,
∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.
点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.
16、
【解析】
试题解析:连接
∵四边形ABCD是矩形,
∴CE=BC=4,
∴CE=2CD,
由勾股定理得:
∴阴影部分的面积是S=S扇形CEB′−S△CDE
故答案为
三、解答题(共8题,共72分)
17、(1)作图见解析(2)∠BDC=72°
【解析】
解:(1)作图如下:
(2)∵在△ABC中,AB=AC,∠ABC=72°,
∴∠A=180°﹣2∠ABC=180°﹣144°=36°.
∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.
∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.
(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:
①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;
②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.
(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出
∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.
18、1-
【解析】
利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.
【详解】
解:原式=.
【点睛】
本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.
19、(1)甲种服装最多购进75件,(2)见解析.
【解析】
(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;
(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75
答:甲种服装最多购进75件,
(2)设总利润为W元,
W=(120-80-a)x+(90-60)(100-x)
即w=(10-a)x+1.
①当0<a<10时,10-a>0,W随x增大而增大,
∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
②当a=10时,所以按哪种方案进货都可以;
③当10<a<20时,10-a<0,W随x增大而减小.
当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.
【点睛】
本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.
20、原计划每天种树40棵.
【解析】
设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.
【详解】
设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得
−=5,
解得:x=40,
经检验,x=40是原方程的解.
答:原计划每天种树40棵.
21、 (1) (2)△ABC∽△DEF.
【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
【详解】
(1)
故答案为
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∴∠ABC=∠DEF.
∵
∴
∴△ABC∽△DEF.
【点睛】
考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
22、见解析
【解析】
根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.
【详解】
证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∵在△BAF和△DAE中,
,
∴△BAF≌△DAE(SAS),
∴∠FAB=∠EAD,
∵∠EAD+∠BAE=90°,
∴∠FAB+∠BAE=90°,
∴∠FAE=90°,
∴EA⊥AF.
23、(1)M的坐标为;(2)B(4,3);(3)或.
【解析】
利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案
根据抛物线的对称性质解答;
利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围.
【详解】
解:(1) ,
该抛物线的顶点M的坐标为;
由知,该抛物线的顶点M的坐标为;
该抛物线的对称轴直线是,
点A的坐标为,轴,交抛物线于点B,
点A与点B关于直线对称,
;
抛物线与y轴交于点,
.
.
抛物线的表达式为.
抛物线G的解析式为:
由.
由,得:
抛物线与x轴的交点C的坐标为,
点C关于y轴的对称点的坐标为.
把代入,得:.
把代入,得:.
所求m的取值范围是或.
故答案为(1)M的坐标为;(2)B(4,3);(3)或.
【点睛】
本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键.
24、(1)8m2;(2)68m2;(3) 40,8
【解析】
(1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
【详解】
(1) ∵为长方形和菱形的对称中心,,∴
∵,,∴
∴当时,,
(2)∵,
∴-,
∵,,
∴解不等式组得,
∵,结合图像,当时,随的增大而减小.
∴当时, 取得最大值为
(3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
【点睛】
本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
江苏省海安县东片2022年中考数学猜题卷含解析: 这是一份江苏省海安县东片2022年中考数学猜题卷含解析,共17页。试卷主要包含了解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。
湖北省孝感市八校联考2022年中考数学猜题卷含解析: 这是一份湖北省孝感市八校联考2022年中考数学猜题卷含解析,共17页。试卷主要包含了下列分式是最简分式的是等内容,欢迎下载使用。
2022年江苏省海安市八校中考联考数学试题含解析: 这是一份2022年江苏省海安市八校中考联考数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是等内容,欢迎下载使用。