终身会员
搜索
    上传资料 赚现金
    2022届湖北省宜昌市重点名校中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022届湖北省宜昌市重点名校中考数学最后冲刺模拟试卷含解析01
    2022届湖北省宜昌市重点名校中考数学最后冲刺模拟试卷含解析02
    2022届湖北省宜昌市重点名校中考数学最后冲刺模拟试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省宜昌市重点名校中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022届湖北省宜昌市重点名校中考数学最后冲刺模拟试卷含解析,共24页。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是(  )
    A.待定系数法 B.配方 C.降次 D.消元
    2.绿豆在相同条件下的发芽试验,结果如下表所示:
    每批粒数n
    100
    300
    400
    600
    1000
    2000
    3000
    发芽的粒数m
    96
    282
    382
    570
    948
    1904
    2850
    发芽的频率
    0.960
    0.940
    0.955
    0.950
    0.948
    0.952
    0.950
    下面有三个推断:
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
    ②根据上表,估计绿豆发芽的概率是0.95;
    ③若n为4000,估计绿豆发芽的粒数大约为3800粒.
    其中推断合理的是(  )
    A.① B.①② C.①③ D.②③
    3.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.
    如果令
    其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是(  )
    A.同意第1号或者第2号同学当选的人数
    B.同时同意第1号和第2号同学当选的人数
    C.不同意第1号或者第2号同学当选的人数
    D.不同意第1号和第2号同学当选的人数
    4.下列二次根式中,为最简二次根式的是(  )
    A. B. C. D.
    5.如图是一个空心圆柱体,其俯视图是( )

    A. B. C. D.
    6.下列关于统计与概率的知识说法正确的是(  )
    A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
    B.检测100只灯泡的质量情况适宜采用抽样调查
    C.了解北京市人均月收入的大致情况,适宜采用全面普查
    D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
    7.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )

    A.5元,2元 B.2元,5元
    C.4.5元,1.5元 D.5.5元,2.5元
    8.如图是由四个相同的小正方体堆成的物体,它的正视图是(  )

    A. B. C. D.
    9.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为(  )
    A.﹣1 B.0 C.1或﹣1 D.2或0
    10.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )

    A.1 B.2 C.3 D.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.

    12.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.

    13.使分式的值为0,这时x=_____.
    14.分解因式:x2–4x+4=__________.
    15.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.

    16.在函数中,自变量x的取值范围是_________.
    三、解答题(共8题,共72分)
    17.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
    组别

    成绩(分)

    频数(人数)

    频率





    2

    0.04





    10

    0.2





    14

    b





    a

    0.32





    8

    0.16

    请根据表格提供的信息,解答以下问题:
    (1)本次决赛共有 名学生参加;
    (2)直接写出表中a= ,b= ;
    (3)请补全下面相应的频数分布直方图;

    (4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
    18.(8分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
    (1)如图①,求∠ODE的大小;
    (2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.

    19.(8分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
    (1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
    ①求证:△ABP∽△BCP;
    ②若 PA=3,PC=4,则 PB= .
    (2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
    ①求∠CPD 的度数;
    ②求证:P 点为△ABC 的费马点.

    20.(8分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).

    (1)在,,中,正方形ABCD的“关联点”有_____;
    (2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
    (3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
    21.(8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)
    (1)求车架档AD的长;
    (2)求车座点E到车架档AB的距离(结果精确到1cm).

    22.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
    23.(12分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
    (1)求该抛物线的解析式;
    (2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
    (3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
    24.如图,在中,,且,,为的中点,于点,连结,.

    (1)求证:;
    (2)当为何值时,的值最大?并求此时的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据一元二次方程的解的定义即可求出答案.
    【详解】
    由题意可知:a2-a-1=0,
    ∴a2-a=1,
    或a2-1=a
    ∴a3-2a+1
    =a3-a-a+1
    =a(a2-1)-(a-1)
    =a2-a+1
    =1+1
    =2
    故选:C.
    【点睛】
    本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.
    2、D
    【解析】
    ①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
    【详解】
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
    ②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
    ③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
    故选D.
    【点睛】
    本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    3、B
    【解析】
    先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.
    【详解】
    第1,2,3,……,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a1,1来确定,
    是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a1,2来确定,
    ∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,
    故选B.
    【点睛】
    本题考查了推理应用题,题目比较新颖,是基础题.
    4、B
    【解析】
    最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
    【详解】
    A. =3, 不是最简二次根式;
    B. ,最简二次根式;
    C. =,不是最简二次根式;
    D. =,不是最简二次根式.
    故选:B
    【点睛】
    本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
    5、D
    【解析】
    根据从上边看得到的图形是俯视图,可得答案.
    【详解】
    该空心圆柱体的俯视图是圆环,如图所示:

    故选D.
    【点睛】
    本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.
    6、B
    【解析】
    根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
    【详解】
    解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
    B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
    C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
    D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
    故选B.
    【点睛】
    本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
    7、A
    【解析】
    可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.
    【详解】
    设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:
    ,解得:.
    故1本笔记本的单价为5元,1支笔的单价为2元.
    故选A.
    【点睛】
    本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.
    8、A
    【解析】
    【分析】根据正视图是从物体的正面看得到的图形即可得.
    【详解】从正面看可得从左往右2列正方形的个数依次为2,1,
    如图所示:

    故选A.
    【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
    9、A
    【解析】
    把x=﹣1代入方程计算即可求出k的值.
    【详解】
    解:把x=﹣1代入方程得:1+2k+k2=0,
    解得:k=﹣1,
    故选:A.
    【点睛】
    此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    10、B
    【解析】
    根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.
    【详解】
    解:∵反比例函数的图象位于一三象限,
    ∴m>0
    故①错误;
    当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;
    将A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,
    ∵m>0
    ∴h<k
    故③正确;
    将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,
    故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上
    故④正确,
    故选:B.
    【点睛】
    本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、50
    【解析】
    根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
    【详解】
    解:设铅直距离为x,则水平距离为,
    根据题意得:,
    解得:(负值舍去),
    则她实际上升了50米,
    故答案为:50
    【点睛】
    本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.
    12、60.
    【解析】
    首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
    【详解】
    设半圆的圆心为O,连接OE,OA,
    ∵CD=2OC=2BC,
    ∴OC=BC,
    ∵∠ACB=90°,即AC⊥OB,
    ∴OA=BA,
    ∴∠AOC=∠ABC,
    ∵∠BAC=30°,
    ∴∠AOC=∠ABC=60°,
    ∵AE是切线,
    ∴∠AEO=90°,
    ∴∠AEO=∠ACO=90°,
    ∵在Rt△AOE和Rt△AOC中,

    ∴Rt△AOE≌Rt△AOC(HL),
    ∴∠AOE=∠AOC=60°,
    ∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
    ∴点E所对应的量角器上的刻度数是60°,
    故答案为:60.

    【点睛】
    本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
    13、1
    【解析】
    试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
    答案为1.
    考点:分式方程的解法
    14、(x–1)1
    【解析】
    试题分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.
    考点:分解因式.
    15、6﹣π
    【解析】
    过F作FM⊥BE于M,则∠FME=∠FMB=90°,

    ∵四边形ABCD是正方形,AB=2,
    ∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
    由勾股定理得:BD=2,
    ∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
    ∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
    ∴BM=FM=2,ME=2,
    ∴阴影部分的面积=×2×2+×4×2+-=6-π.
    故答案为:6-π.
    点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.
    16、x≤1且x≠﹣1
    【解析】
    试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.
    考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.

    三、解答题(共8题,共72分)
    17、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
    【解析】
    试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
    试题解析:(1)2÷0.04=50
    (2)50×0.32=16 14÷50=0.28
    (3)
    (4)(0.32+0.16)×100%=48%
    考点:频数分布直方图
    18、(1)∠ODE=90°;(2)∠A=45°.
    【解析】
    分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;
    (Ⅱ)利用中位线的判定和定理解答即可.
    详解:(Ⅰ)连接OE,BD.
    ∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.
    ∵E点是BC的中点,∴DE=BC=BE.
    ∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.
    ∵∠ABC=90°,∴∠ODE=90°;
    (Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.
    ∵OA=OD,∴∠A=∠ADO=.

    点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.
    19、(1)①证明见解析;②;(2)①60°;②证明见解析;
    【解析】
    试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
    ②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
    (2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
    ②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
    试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
    ∴∠PAB=∠PBC,
    又∵∠APB=∠BPC=120°,
    ∴△ABP∽△BCP,
    ②解:∵△ABP∽△BCP,
    ∴,
    ∴PB2=PA•PC=12,
    ∴PB=2;
    (2)解:①∵△ABE与△ACD都为等边三角形,
    ∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
    ∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
    在△ACE和△ABD中,

    ∴△ACE≌△ABD(SAS),
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠CPD=∠6=∠5=60°;
    ②证明:∵△ADF∽△CFP,
    ∴AF•PF=DF•CF,
    ∵∠AFP=∠CFD,
    ∴△AFP∽△CDF.
    ∴∠APF=∠ACD=60°,
    ∴∠APC=∠CPD+∠APF=120°,
    ∴∠BPC=120°,
    ∴∠APB=360°﹣∠BPC﹣∠APC=120°,
    ∴P点为△ABC的费马点.

    考点:相似形综合题
    20、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
    【解析】
    (1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
    (2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
    (3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
    【详解】
    (1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),

    观察图象可知:正方形ABCD的“关联点”为P2,P3;
    (2)作正方形ABCD的内切圆和外接圆,

    ∴OF=1,,.
    ∵E是正方形ABCD的“关联点”,
    ∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
    ∵点E在直线上,
    ∴点E在线段FG上.
    分别作FF’⊥x轴,GG’⊥x轴,
    ∵OF=1,,
    ∴,.
    ∴.
    根据对称性,可以得出.
    ∴或.
    (3)∵、N(0,1),
    ∴,ON=1.
    ∴∠OMN=60°.
    ∵线段MN上的每一个点都是正方形ABCD
    的“关联点”,
    ①MN与小⊙Q相切于点F,如图3中,

    ∵QF=1,∠OMN=60°,
    ∴.
    ∵,
    ∴.
    ∴.
    ②M落在大⊙Q上,如图4中,

    ∵,,
    ∴.
    ∴.
    综上:.
    【点睛】
    本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.
    21、63cm.
    【解析】
    试题分析:(1)在Rt ACD,AC=45,DC=60,根据勾股定理可得AD= 即可得到AD的长度;(2)过点E作EF AB,垂足为F,由AE=AC+CE,在直角 EFA中,根据EF=AEsin75°可求出EF的长度,即为点E到车架档AB的距离;
    试题解析:

    22、不公平
    【解析】
    【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
    【详解】根据题意列表如下:

    1
    2
    3
    1
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    2
    (1,2)
    (2,2)
    (3,2)
    (1,2)
    3
    (1,3)
    (2,3)
    (3,3)
    (1,3)
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
    ∴P(甲获胜)=,P(乙获胜)=1﹣=,
    则该游戏不公平.
    【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
    23、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
    【解析】
    试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
    (2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
    (3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
    试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
    ∴B(3,0),C(0,3),
    把B、C坐标代入抛物线解析式可得,解得,
    ∴抛物线解析式为y=x2﹣4x+3;
    (2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴抛物线对称轴为x=2,P(2,﹣1),
    设M(2,t),且C(0,3),
    ∴MC=,MP=|t+1|,PC=,
    ∵△CPM为等腰三角形,
    ∴有MC=MP、MC=PC和MP=PC三种情况,
    ①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
    ②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
    ③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
    综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
    (3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,

    设E(x,x2﹣4x+3),则F(x,﹣x+3),
    ∵0<x<3,
    ∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
    ∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
    ∴当x=时,△CBE的面积最大,此时E点坐标为(,),
    即当E点坐标为(,)时,△CBE的面积最大.
    考点:二次函数综合题.
    24、(1)见解析;(2)时,的值最大,
    【解析】
    (1)延长BA、CF交于点G,利用可证△AFG≌△DFC得出,,根据,可证出,得出,利用,,点是的中点,得出,,则有,可得出,得出,即可得出结论;
    (2)设BE=x,则,,由勾股定理得出,,得出,求出,由二次函数的性质得出当x=1,即BE=1时,CE2-CF2有最大值,,由三角函数定义即可得出结果.
    【详解】
    解:(1)证明:如图,延长交的延长线于点,

    ∵为的中点,
    ∴.
    在中,,
    ∴.
    在和中,

    ∴,
    ∴,,
    ∵.
    ∴,
    ∴,
    ∵,,点是的中点,
    ∴,.
    ∴.
    ∴.
    ∴.
    在中,,
    又∵,
    ∴.

    (2)设,则,
    ∵,
    ∴,
    在中,,
    在中,,
    ∵,
    ∴,
    ∴,
    ∴当,即时,的值最大,
    ∴.
    在中,
    【点睛】
    本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.

    相关试卷

    2022年山西省洪洞县重点名校中考数学最后冲刺模拟试卷含解析: 这是一份2022年山西省洪洞县重点名校中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,计算6m6÷,下列各式计算正确的是等内容,欢迎下载使用。

    2022届云南省罗平县重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022届云南省罗平县重点达标名校中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了答题时请按要求用笔,已知点A,若a+b=3,,则ab等于等内容,欢迎下载使用。

    2022届山东省冠县重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022届山东省冠县重点达标名校中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,分式方程=1的解为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map