终身会员
搜索
    上传资料 赚现金
    2022届湖北省武汉市江夏区市级名校中考联考数学试题含解析
    立即下载
    加入资料篮
    2022届湖北省武汉市江夏区市级名校中考联考数学试题含解析01
    2022届湖北省武汉市江夏区市级名校中考联考数学试题含解析02
    2022届湖北省武汉市江夏区市级名校中考联考数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省武汉市江夏区市级名校中考联考数学试题含解析

    展开
    这是一份2022届湖北省武汉市江夏区市级名校中考联考数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )

    A. B. C. D.
    2.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是(  )

    A.一次性购买数量不超过10本时,销售价格为20元/本
    B.a=520
    C.一次性购买10本以上时,超过10本的那部分书的价格打八折
    D.一次性购买20本比分两次购买且每次购买10本少花80元
    3.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是(  )

    A.2 B.3 C.4 D.5
    4.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是( ).

    A. B. C. D.
    5.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为(  )

    A.4 B.5 C.6 D.7
    6.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
    A. B. C. D.
    7.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )

    A.32° B.30° C.38° D.58°
    8.在0,π,﹣3,0.6,这5个实数中,无理数的个数为(  )
    A.1个 B.2个 C.3个 D.4个
    9.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是(  )
    A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
    10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    二、填空题(共7小题,每小题3分,满分21分)
    11.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
    12.如图,在平行四边形中,点在边上,将沿折叠得到,点落在对角线上.若,,,则的周长为________.

    13.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.

    14.如图,AB为⊙O的直径,C、D为⊙O上的点,.若∠CAB=40°,则∠CAD=_____.

    15.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .

    16.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.

    17.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
    ②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
    ①若点P的纵坐标为2,求直线AB的函数表达式.
    ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

    19.(5分)先化简,,其中x=.
    20.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.

    21.(10分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:

    根据统计图所提供的信息,解答下列问题:
    (1)本次抽样调查中的样本容量是 ;
    (2)补全条形统计图;
    (3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
    22.(10分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
    (1)求证:△ACE≌△BCD;
    (2)若DE=13,BD=12,求线段AB的长.

    23.(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.

    (1)判断:一个内角为120°的菱形  等距四边形.(填“是”或“不是”)
    (2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为   端点均为非等距点的对角线长为  
    (3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.
    24.(14分)先化简,后求值:,其中.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据俯视图可确定主视图的列数和每列小正方体的个数.
    【详解】
    由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.
    故答案选B.
    【点睛】
    由几何体的俯视图可确定该几何体的主视图和左视图.
    2、D
    【解析】
    A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
    【详解】
    解:A、∵200÷10=20(元/本),
    ∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
    C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
    ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
    B、∵200+16×(30﹣10)=520(元),
    ∴a=520,B选项正确;
    D、∵200×2﹣200﹣16×(20﹣10)=40(元),
    ∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
    故选D.
    【点睛】
    考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
    3、C
    【解析】
    根据三角形的中位线定理可得DE∥BC,=,即可证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方可得=,已知△ADE的面积为1,即可求得S△ABC=1.
    【详解】
    ∵D、E分别是AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,=,
    ∴△ADE∽△ABC,
    ∴=()2=,
    ∵△ADE的面积为1,
    ∴S△ABC=1.
    故选C.
    【点睛】
    本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方得到=是解决问题的关键.
    4、D
    【解析】
    根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.
    【详解】
    解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.
    【点睛】
    本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.
    5、B
    【解析】
    试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.

    此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.
    6、A
    【解析】
    解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
    图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
    7、A
    【解析】
    根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
    【详解】
    解:∵∠B=58°,
    ∴∠AOC=116°,
    ∵OA=OC,
    ∴∠C=∠OAC=32°,
    故选:A.
    【点睛】
    此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
    8、B
    【解析】
    分别根据无理数、有理数的定义逐一判断即可得.
    【详解】
    解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,
    故选B.
    【点睛】
    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
    9、C
    【解析】
    根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
    【详解】
    解:∵抛物线和轴有交点,
    ,
    解得:且.
    故选.
    【点睛】
    本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
    10、D
    【解析】
    由抛物线的开口向下知a<0,
    与y轴的交点为在y轴的正半轴上,得c>0,
    对称轴为x= <1,∵a<0,∴2a+b<0,
    而抛物线与x轴有两个交点,∴ −4ac>0,
    当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.
    ∵ >2,∴4ac−<8a,∴+8a>4ac,
    ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.
    由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,
    上面两个相加得到6a<−6,∴a<−1.故选D.
    点睛:本题考查了二次函数图象与系数的关系,二次函数 中,a的符号由抛物线的开口方向决定;c的符号由抛物线与y轴交点的位置决定;b的符号由对称轴位置与a的符号决定;抛物线与x轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4.4×1
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:44000000=4.4×1,
    故答案为4.4×1.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、6.
    【解析】
    先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE,从而可求出的周长.
    【详解】
    解:∵四边形是平行四边形,
    ∴BC=AD=5,
    ∵,
    ∴AC= ==4
    ∵沿折叠得到,
    ∴AF=AB=3,EF=BE,
    ∴的周长=CE+EF+FC=CE+BE+CF
    =BC+AC-AF
    =5+4-3=6
    故答案为6.
    【点睛】
    本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.
    13、
    【解析】
    解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
    在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
    故答案为:.

    点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
    14、25°
    【解析】
    连接BC,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.
    【详解】
    如图,连接BC,BD,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∵∠CAB=40°,
    ∴∠ABC=50°,
    ∵,
    ∴∠ABD=∠CBD=∠ABC=25°,
    ∴∠CAD=∠CBD=25°.
    故答案为25°.

    【点睛】
    本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.
    15、1
    【解析】
    利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
    【详解】
    解:设AF=a(a<2),则F(a,2),E(2,a),
    ∴FD=DE=2−a,
    ∴S△DEF=DF•DE==,
    解得a=或a=(不合题意,舍去),
    ∴F(,2),
    把点F(,2)代入
    解得:k=1,
    故答案为1.
    【点睛】
    本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
    16、22.5
    【解析】
    ∵ABCD是正方形,
    ∴∠DBC=∠BCA=45°,
    ∵BP=BC,
    ∴∠BCP=∠BPC=(180°-45°)=67.5°,
    ∴∠ACP度数是67.5°-45°=22.5°
    17、①②③④
    【解析】

    ①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
    ∵∠AMN=∠ABC=90°,
    ∴A,B,N,M四点共圆,
    ∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
    ∴∠ANM=∠NAM=45°,
    ∴AM=MN;
    ②由同角的余角相等知,∠HAM=∠PMN,
    ∴Rt△AHM≌Rt△MPN,
    ∴MP=AH=AC=BD;
    ③∵∠BAN+∠QAD=∠NAQ=45°,
    ∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
    ∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
    ∴点U在NQ上,有BN+DQ=QU+UN=NQ;
    ④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
    ∴四边形SMWB是正方形,有MS=MW=BS=BW,
    ∴△AMS≌△NMW
    ∴AS=NW,
    ∴AB+BN=SB+BW=2BW,
    ∵BW:BM=1: ,
    ∴.
    故答案为:①②③④
    点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
    【解析】
    (1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
    ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
    (2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
    【详解】
    (1)①如图1,


    反比例函数为,
    当时,,

    当时,



    设直线的解析式为,


    直线的解析式为;
    ②四边形是菱形,
    理由如下:如图2,

    由①知,,
    轴,

    点是线段的中点,

    当时,由得,,
    由得,,
    ,,


    四边形为平行四边形,

    四边形是菱形;
    (2)四边形能是正方形,
    理由:当四边形是正方形,记,的交点为,
    ,
    当时,,
    ,,

    ,,,


    .
    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
    19、
    【解析】
    根据分式的化简方法先通分再约分,然后带入求值.
    【详解】
    解:

    当时,.
    【点睛】
    此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.
    20、(1)证明见解析(2)13
    【解析】
    (1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
    (2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
    【详解】
    (1)∵△ACB和△ECD都是等腰直角三角形
    ∴AC=BC,EC=DC,∠ACB=∠ECD=90°
    ∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
    ∴∠ACE=∠BCD
    ∴△ACE≌△BCD(SAS);
    (2)∵△ACB和△ECD都是等腰直角三角形
    ∴∠BAC=∠B=45°
    ∵△ACE≌△BCD
    ∴AE=BD=12,∠EAC=∠B=45°
    ∴∠EAD=∠EAC+∠BAC=90°,
    ∴△EAD是直角三角形

    【点睛】
    解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
    21、(1)100;(2)作图见解析;(3)1.
    【解析】
    试题分析:(1)根据百分比= 计算即可;
    (2)求出“打球”和“其他”的人数,画出条形图即可;
    (3)用样本估计总体的思想解决问题即可.
    试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,
    故答案为100;
    (2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:

    (3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.
    22、(3)证明见解析; (3)AB=3.
    【解析】
    (3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;
    (3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.
    【详解】
    证明:(3)如图,

    ∵△ACB与△ECD都是等腰直角三角形,
    ∴AC=BC,CE=CD,
    ∵∠ACB=∠ECD=90°,
    ∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
    ∴∠BCD=∠ACE,在△BCD和△ACE中,
    ∵BC=AC,∠BCD=∠ACE,CD=CE,
    ∴△BCD≌△ACE(SAS);
    (3)由(3)知△BCD≌△ACE,
    则∠DBC=∠EAC,AE=BD=33,
    ∵∠CAD+∠DBC=90°,
    ∴∠EAC+∠CAD=90°,即∠EAD=90°,
    ∵AE=33,ED=33,
    ∴AD==5,
    ∴AB=AD+BD=33+5=3.
    【点睛】
    本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.

    考点:3.全等三角形的判定与性质;3.等腰直角三角形.
    23、(1)是;(2)见解析;(3)150°.
    【解析】
    (1)由菱形的性质和等边三角形的判定与性质即可得出结论;
    (2)根据题意画出图形,由勾股定理即可得出答案;
    (3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.
    【详解】
    解:(1)一个内角为120°的菱形是等距四边形;
    故答案为是;
    (2)如图2,图3所示:
    在图2中,由勾股定理得:
    在图3中,由勾股定理得:
    故答案为
    (3)解:连接BD.如图1所示:
    ∵△ABE与△CDE都是等腰直角三角形,
    ∴DE=EC,AE=EB,
    ∠DEC+∠BEC=∠AEB+∠BEC,
    即∠AEC=∠DEB,
    在△AEC和△BED中, ,
    ∴△AEC≌△BED(SAS),
    ∴AC=BD,
    ∵四边形ABCD是以A为等距点的等距四边形,
    ∴AD=AB=AC,
    ∴AD=AB=BD,
    ∴△ABD是等边三角形,
    ∴∠DAB=60°,
    ∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,
    在△AED和△AEC中,
    ∴△AED≌△AEC(SSS),
    ∴∠CAE=∠DAE=15°,
    ∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,
    ∵AB=AC,AC=AD,

    ∴∠BCD=∠ACB+∠ACD=75°+75°=150°.

    【点睛】
    本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
    24、,
    【解析】
    分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
    详解:原式=•﹣1
    =﹣
    =
    当x=+1时,原式==.
    点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.

    相关试卷

    湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析: 这是一份湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    湖北省武汉市硚口区市级名校2021-2022学年中考二模数学试题含解析: 这是一份湖北省武汉市硚口区市级名校2021-2022学年中考二模数学试题含解析,共20页。试卷主要包含了下列各式计算正确的是,将一副三角尺,下列计算正确的是等内容,欢迎下载使用。

    湖北省武汉市江夏区市级名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份湖北省武汉市江夏区市级名校2021-2022学年中考数学适应性模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔,已知,如图,与∠1是内错角的是,的值等于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map