搜索
    上传资料 赚现金
    英语朗读宝

    2022届湖北省武汉市六中学致诚中学中考三模数学试题含解析

    2022届湖北省武汉市六中学致诚中学中考三模数学试题含解析第1页
    2022届湖北省武汉市六中学致诚中学中考三模数学试题含解析第2页
    2022届湖北省武汉市六中学致诚中学中考三模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省武汉市六中学致诚中学中考三模数学试题含解析

    展开

    这是一份2022届湖北省武汉市六中学致诚中学中考三模数学试题含解析,共18页。试卷主要包含了我市连续7天的最高气温为,计算3a2-a2的结果是,计算±的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.的倒数是( )
    A. B.-3 C.3 D.
    2.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是(   )

    A. B.12 C.14 D.21
    3.某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )
    A. B.
    C. D.
    4.当ab>0时,y=ax2与y=ax+b的图象大致是(  )
    A. B. C. D.
    5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    6.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    7.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(  )

    A.50° B.60° C.70° D.80°
    8.关于2、6、1、10、6的这组数据,下列说法正确的是( )
    A.这组数据的众数是6 B.这组数据的中位数是1
    C.这组数据的平均数是6 D.这组数据的方差是10
    9.计算±的值为(  )
    A.±3 B.±9 C.3 D.9
    10.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )

    A.先向下移动1格,再向左移动1格 B.先向下移动1格,再向左移动2格
    C.先向下移动2格,再向左移动1格 D.先向下移动2格,再向左移动2格
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.

    12.计算:(π﹣3)0+(﹣)﹣1=_____.
    13.设、是一元二次方程的两实数根,则的值为 .
    14.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
    15.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
    16.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是
    三、解答题(共8题,共72分)
    17.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.
    18.(8分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.
    (1)求证:点F是AC的中点;
    (2)若∠A=30°,AF=,求图中阴影部分的面积.

    19.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?

    20.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
    (1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
    (2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.

    21.(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
    (1)求A、B两种钢笔每支各多少元?
    (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
    (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
    22.(10分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=

    (1)求a,k的值及点B的坐标;
    (2)观察图象,请直接写出不等式ax﹣1≥的解集;
    (3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
    23.(12分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
    销售时段
    销售数量
    销售收入
    种型号
    种型号
    第一周
    3台
    4台
    1200元
    第二周
    5台
    6台
    1900元
    (进价、售价均保持不变,利润=销售收入—进货成本)
    (1)求、两种型号的电器的销售单价;
    (2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
    (3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
    24.某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:
    (1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?
    (2)扇形统计图中E景点所对应的圆心角的度数是  ,并补全条形统计图.
    (3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    先求出,再求倒数.
    【详解】
    因为
    所以的倒数是
    故选A
    【点睛】
    考核知识点:绝对值,相反数,倒数.
    2、A
    【解析】
    根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.
    【详解】
    解:过点A作AD⊥BC,

    ∵△ABC中,cosB=,sinC=,AC=5,
    ∴cosB==,
    ∴∠B=45°,
    ∵sinC===,
    ∴AD=3,
    ∴CD==4,
    ∴BD=3,
    则△ABC的面积是:×AD×BC=×3×(3+4)=.
    故选:A.
    【点睛】
    此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.
    3、D
    【解析】
    分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.
    详解:设2016年的国内生产总值为1,
    ∵2017年国内生产总值(GDP)比2016年增长了12%,∴2017年的国内生产总值为1+12%;
    ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),
    ∵这两年GDP年平均增长率为x%, ∴2018年的国内生产总值也可表示为:,
    ∴可列方程为:(1+12%)(1+7%)=.故选D.
    点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.
    4、D
    【解析】
    ∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;
    当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.
    故选B.
    5、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    6、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    7、B
    【解析】
    试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
    由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
    考点:旋转的性质.
    8、A
    【解析】
    根据方差、算术平均数、中位数、众数的概念进行分析.
    【详解】
    数据由小到大排列为1,2,6,6,10,
    它的平均数为(1+2+6+6+10)=5,
    数据的中位数为6,众数为6,
    数据的方差= [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.
    故选A.
    考点:方差;算术平均数;中位数;众数.
    9、B
    【解析】
    ∵(±9)2=81,
    ∴±±9.
    故选B.
    10、C
    【解析】
    根据题意,结合图形,由平移的概念求解.
    【详解】
    由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.
    【点睛】
    本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.1.
    【解析】
    分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.
    详解:由旋转的性质可得:AD=AB,
    ∵∠B=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB,
    ∵AB=2,BC=3.1,
    ∴CD=BC-BD=3.1-2=1.1.
    故答案为:1.1.
    点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
    12、-1
    【解析】
    先计算0指数幂和负指数幂,再相减.
    【详解】
    (π﹣3)0+(﹣)﹣1,
    =1﹣3,
    =﹣1,
    故答案是:﹣1.
    【点睛】
    考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.
    13、27
    【解析】
    试题分析:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.
    故答案为27.
    点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.
    14、-2
    【解析】
    试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
    考点:一次函数图象与系数的关系.
    15、5.2
    【解析】
    分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
    详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
    ∴方差为:.
    点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
    16、k≥,且k≠1
    【解析】
    试题解析:∵a=k,b=2(k+1),c=k-1,
    ∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,
    解得:k≥-,
    ∵原方程是一元二次方程,
    ∴k≠1.
    考点:根的判别式.

    三、解答题(共8题,共72分)
    17、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.
    【解析】
    试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;
    (2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.
    试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,
    根据题意得:700(1+x)2=1183,
    解得:x1=0.3=30%,x2=﹣2.3(舍去),
    答:这两年该市推行绿色建筑面积的年平均增长率为30%;
    (2)根据题意得:1183×(1+30%)=1537.9(万平方米),
    ∵1537.9>1500,
    ∴2017年该市能完成计划目标.
    【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.
    18、(1)见解析;(2)
    【解析】
    (1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;
    (2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.
    【详解】
    (1)证明:连接OD、CD,如图,

    ∵BC为直径,
    ∴∠BDC=90°,
    ∵∠ACB=90°,
    ∴AC为⊙O的切线,
    ∵EF为⊙O的切线,
    ∴FD=FC,
    ∴∠1=∠2,
    ∵∠1+∠A=90°,∠2+∠3=90°,
    ∴∠3=∠A,
    ∴FD=FA,
    ∴FC=FA,
    ∴点F是AC中点;
    (2)解:在Rt△ACB中,AC=2AF=2,
    而∠A=30°,
    ∴∠CBA=60°,BC=AC=2,
    ∵OB=OD,
    ∴△OBD为等边三角形,
    ∴∠BOD=60°,
    ∵EF为切线,
    ∴OD⊥EF,
    在Rt△ODE中,DE=OD=,
    ∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
    19、(1)30°;(2)海监船继续向正东方向航行是安全的.
    【解析】
    (1)根据直角的性质和三角形的内角和求解;
    (2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.
    【详解】
    解:(1)在△APB中,∠PAB=30°,∠ABP=120°
    ∴∠APB=180°-30°-120°=30°
    (2)过点P作PH⊥AB于点H

    在Rt△APH中,∠PAH=30°,AH=PH
    在Rt△BPH中,∠PBH=30°,BH=PH
    ∴AB=AH-BH=PH=50
    解得PH=25>25,因此不会进入暗礁区,继续航行仍然安全.
    考点:解直角三角形
    20、(1);(2)列表见解析,.
    【解析】
    试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
    试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
    小华
    小丽

    -1

    0

    2

    -1

    (-1,-1)

    (-1,0)

    (-1,2)

    0

    (0,-1)

    (0,0)

    (0,2)

    2

    (2,-1)

    (2,0)

    (2,2)

    共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
    ∴P(点M落在如图所示的正方形网格内)==.
    考点:1列表或树状图求概率;2平面直角坐标系.
    21、(1) A种钢笔每只15元 B种钢笔每只20元;
    (2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
    (3) 定价为33元或34元,最大利润是728元.
    【解析】
    (1)设A种钢笔每只x元,B种钢笔每支y元,
    由题意得 ,
    解得: ,
    答:A种钢笔每只15元,B种钢笔每支20元;
    (2)设购进A种钢笔z支,
    由题意得:,
    ∴42.4≤z

    相关试卷

    湖北省武汉市六中学致诚中学2023-2024学年八上数学期末预测试题含答案:

    这是一份湖北省武汉市六中学致诚中学2023-2024学年八上数学期末预测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,正确的是,下面的计算中,正确的是等内容,欢迎下载使用。

    湖北省武汉市六中学致诚中学2022-2023学年七下数学期末调研试题含答案:

    这是一份湖北省武汉市六中学致诚中学2022-2023学年七下数学期末调研试题含答案,共7页。试卷主要包含了下列函数,若点等内容,欢迎下载使用。

    2023年湖北省武汉市光谷实验中学中考模拟数学试题(六月)(含解析):

    这是一份2023年湖北省武汉市光谷实验中学中考模拟数学试题(六月)(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map