|试卷下载
搜索
    上传资料 赚现金
    2022届湖北省阳新县重点达标名校中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    2022届湖北省阳新县重点达标名校中考数学模拟精编试卷含解析01
    2022届湖北省阳新县重点达标名校中考数学模拟精编试卷含解析02
    2022届湖北省阳新县重点达标名校中考数学模拟精编试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省阳新县重点达标名校中考数学模拟精编试卷含解析

    展开
    这是一份2022届湖北省阳新县重点达标名校中考数学模拟精编试卷含解析,共21页。试卷主要包含了方程x2﹣3x+2=0的解是,6的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若(x﹣1)0=1成立,则x的取值范围是(  )
    A.x=﹣1 B.x=1 C.x≠0 D.x≠1
    2.下列标志中,可以看作是轴对称图形的是( )
    A. B. C. D.
    3.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是(  )

    A.100° B.80° C.60° D.50°
    4.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
    A. B. C. D.
    5.方程x2﹣3x+2=0的解是(  )
    A.x1=1,x2=2 B.x1=﹣1,x2=﹣2
    C.x1=1,x2=﹣2 D.x1=﹣1,x2=2
    6.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是(  )

    A.18π B.27π C.π D.45π
    7.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(    )
    A. B. C. D.
    8.6的绝对值是( )
    A.6 B.﹣6 C. D.
    9.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为  

    A.8 B. C.4 D.
    10.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是(  )
    A.x(x+1)=210 B.x(x﹣1)=210
    C.2x(x﹣1)=210 D.x(x﹣1)=210
    二、填空题(共7小题,每小题3分,满分21分)
    11.方程x+1=的解是_____.
    12.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.

    13.使有意义的的取值范围是__________.
    14.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为__.
    15.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.

    16.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示

    17.当a<0,b>0时.化简:=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.
    19.(5分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
    (1)求证:四边形AGDH为菱形;
    (2)若EF=y,求y关于x的函数关系式;
    (3)连结OF,CG.
    ①若△AOF为等腰三角形,求⊙O的面积;
    ②若BC=3,则CG+9=______.(直接写出答案).

    20.(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
    (1)求该抛物线的解析式;
    (2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.

    21.(10分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
    (1)求 x 的范围;
    (2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
    22.(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
    对冬奥会了解程度的统计表
    对冬奥会的了解程度
    百分比
    A非常了解
    10%
    B比较了解
    15%
    C基本了解
    35%
    D不了解
    n%

    (1)n=   ;
    (2)扇形统计图中,D部分扇形所对应的圆心角是   ;
    (3)请补全条形统计图;
    (4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
    23.(12分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高   米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)

    24.(14分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题解析:由题意可知:x-1≠0,
    x≠1
    故选D.
    2、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,不符合题意;
    B、不是轴对称图形,是中心对称图形,不符合题意;
    C、不是轴对称图形,是中心对称图形,不符合题意;
    D、是轴对称图形,符合题意.
    故选D.
    【点睛】
    本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
    3、B
    【解析】
    试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.
    故选:B

    4、C
    【解析】
    分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.
    解答:解:根据题意:2500000=2.5×1.
    故选C.
    5、A
    【解析】
    将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
    【详解】
    解:原方程可化为:(x﹣1)(x﹣1)=0,
    ∴x1=1,x1=1.
    故选:A.
    【点睛】
    此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
    6、B
    【解析】
    先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
    【详解】
    如图1中,

    ∵等边△DEF的边长为2π,等边△ABC的边长为3,
    ∴S矩形AGHF=2π×3=6π,
    由题意知,AB⊥DE,AG⊥AF,
    ∴∠BAG=120°,
    ∴S扇形BAG==3π,
    ∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
    故选B.
    【点睛】
    本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
    7、D
    【解析】
    一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.
    【详解】
    根据题意 :从袋中任意摸出一个球,是白球的概率为==.
    故答案为D
    【点睛】
    此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    8、A
    【解析】
    试题分析:1是正数,绝对值是它本身1.故选A.
    考点:绝对值.
    9、A
    【解析】
    【分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.
    【详解】轴,
    ,B两点纵坐标相同,
    设,,则,,


    故选A.
    【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.
    10、B
    【解析】
    设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
    则总共送出的图书为x(x−1);
    又知实际互赠了210本图书,
    则x(x−1)=210.
    故选:B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x=1
    【解析】
    无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.
    【详解】
    两边平方得:(x+1)1=1x+5,即x1=4,
    开方得:x=1或x=-1,
    经检验x=-1是增根,无理方程的解为x=1.
    故答案为x=1
    12、(16,) (8068,)
    【解析】
    利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
    【详解】
    ∵点A(﹣4,0),B(0,3),
    ∴OA=4,OB=3,
    ∴AB==5,
    ∴第(2)个三角形的直角顶点的坐标是(4,);
    ∵5÷3=1余2,
    ∴第(5)个三角形的直角顶点的坐标是(16,),
    ∵2018÷3=672余2,
    ∴第(2018)个三角形是第672组的第二个直角三角形,
    其直角顶点与第672组的第二个直角三角形顶点重合,
    ∴第(2018)个三角形的直角顶点的坐标是(8068,).
    故答案为:(16,);(8068,)
    【点睛】
    本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
    13、
    【解析】
    根据二次根式的被开方数为非负数求解即可.
    【详解】
    由题意可得:,解得:.
    所以答案为.
    【点睛】
    本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.
    14、
    【解析】
    根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.
    【详解】
    画树状图得:

    ∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线 图象上的只有(3,2),
    ∴点(a,b)在图象上的概率为.
    【点睛】
    本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.
    15、45°
    【解析】
    过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.
    故答案为45°.

    点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.
    16、
    【解析】
    在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的运算可得出结果.
    【详解】
    解:在△ABC中,,∠A=∠A,
    ∴△ABC△ADE,
    ∴DE=BC,
    ∴=3=3
    ∴=,
    故答案为.
    【点睛】
    本题考查了相似三角形的判定和性质以及向量的运算.
    17、
    【解析】
    分析:按照二次根式的相关运算法则和性质进行计算即可.
    详解:
    ∵,
    ∴.
    故答案为:.
    点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析(2)m=1或m=-1
    【解析】
    试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
    (2)先利用求根公式得到然后利用有理数的整除性确定整数的值.
    试题解析:(1)证明:∵m≠0,
    ∴方程为一元二次方程,

    ∴此方程总有两个不相等的实数根;
    (2)∵

    ∵方程的两个实数根都是整数,且m是整数,
    ∴m=1或m=−1.
    19、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
    【解析】
    (1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
    (2)只要证明△AEF∽△ACB,可得解决问题;
    (3)①分三种情形分别求解即可解决问题;
    ②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;
    【详解】
    (1)证明:∵GH垂直平分线段AD,
    ∴HA=HD,GA=GD,
    ∵AB是直径,AB⊥GH,
    ∴EG=EH,
    ∴DG=DH,
    ∴AG=DG=DH=AH,
    ∴四边形AGDH是菱形.
    (2)解:∵AB是直径,
    ∴∠ACB=90°,
    ∵AE⊥EF,
    ∴∠AEF=∠ACB=90°,
    ∵∠EAF=∠CAB,
    ∴△AEF∽△ACB,
    ∴,
    ∴,
    ∴y=x2(x>0).
    (3)①解:如图1中,连接DF.

    ∵GH垂直平分线段AD,
    ∴FA=FD,
    ∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,
    ∴AB=,
    ∴⊙O的面积为π.
    如图2中,当AF=AO时,

    ∵AB==,
    ∴OA=,
    ∵AF==,
    ∴=,
    解得x=4(负根已经舍弃),
    ∴AB=,
    ∴⊙O的面积为8π.
    如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,

    ∵△ACE∽△ABC,
    ∴AC2=AE•AB,
    ∴16=x•,
    解得x2=2﹣2(负根已经舍弃),
    ∴AB2=16+4x2=8+8,
    ∴⊙O的面积=π••AB2=(2+2)π
    综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;
    ②如图3中,连接CG.

    ∵AC=4,BC=3,∠ACB=90°,
    ∴AB=5,
    ∴OH=OA=,
    ∴AE=,
    ∴OE=OA﹣AE=1,
    ∴EG=EH==,
    ∵EF=x2=,
    ∴FG=﹣,AF==,AH==,
    ∵∠CFG=∠AFH,∠FCG=∠AHF,
    ∴△CFG∽△HFA,
    ∴,
    ∴,
    ∴CG=﹣,
    ∴CG+9=4.
    故答案为4.
    【点睛】
    本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.
    20、 (1) y=﹣x2+2x+3;(2)见解析.
    【解析】
    (1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;
    (2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.
    【详解】
    解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),
    ∴,得,
    ∴该抛物线的解析式为y=﹣x2+2x+3;
    (2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,
    理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),
    ∴抛物线的对称轴为直线x=1,
    ∴点A的坐标为(﹣1,0),
    设点Q的坐标为(1,t),则
    AC2=OC2+OA2=32+12=10,
    AQ2=22+t2=4+t2,
    CQ2=12+(3﹣t)2=t2﹣6t+10,
    当AC为斜边时,
    10=4+t2+t2﹣6t+10,
    解得,t1=1或t2=2,
    ∴点Q的坐标为(1,1)或(1,2),
    当AQ为斜边时,
    4+t2=10+t2﹣6t+10,
    解得,t=,
    ∴点Q的坐标为(1,),
    当CQ时斜边时,
    t2﹣6t+10=4+t2+10,
    解得,t=,
    ∴点Q的坐标为(1,﹣),
    由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.

    【点睛】
    本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.
    21、(1)0<x≤200,且 x是整数(2)175
    【解析】
    (1)根据商场的规定确定出x的范围即可;
    (2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
    【详解】
    (1)根据题意得:0<x≤200,且x为整数;
    (2)设小王原计划购买x个纪念品,
    根据题意得:,
    整理得:5x+175=6x,
    解得:x=175,
    经检验x=175是分式方程的解,且满足题意,
    则小王原计划购买175个纪念品.
    【点睛】
    此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
    22、 (1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.
    【解析】
    (1)根据统计图可以求出这次调查的n的值;
    (2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
    (3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
    (4)根据题意可以写出树状图,从而可以解答本题.
    【详解】
    解:(1)n%=1﹣10%﹣15%﹣35%=40%,
    故答案为40;
    (2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,
    故答案为144°;
    (3)调查的结果为D等级的人数为:400×40%=160,
    故补全的条形统计图如右图所示,

    (4)由题意可得,树状图如右图所示,
    P(奇数)
    P(偶数)
    故游戏规则不公平.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    23、2.1.
    【解析】
    据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
    【详解】
    解:
    据题意得tanB=,
    ∵MN∥AD,
    ∴∠A=∠B,
    ∴tanA=,
    ∵DE⊥AD,
    ∴在Rt△ADE中,tanA=,
    ∵AD=9,
    ∴DE=1,
    又∵DC=0.5,
    ∴CE=2.5,
    ∵CF⊥AB,
    ∴∠FCE+∠CEF=90°,
    ∵DE⊥AD,
    ∴∠A+∠CEF=90°,
    ∴∠A=∠FCE,
    ∴tan∠FCE=
    在Rt△CEF中,CE2=EF2+CF2
    设EF=x,CF=1x(x>0),CE=2.5,
    代入得()2=x2+(1x)2
    解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
    ∴CF=1x=≈2.1,
    ∴该停车库限高2.1米.
    【点睛】
    点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.
    24、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.
    【解析】
    (1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,再根据矩形面积公式列方程求解即可得到答案.
    (1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.
    【详解】
    (1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,
    根据题意得:x(31﹣1x)=116,
    解得:x1=7,x1=9,
    ∴31﹣1x=18或31﹣1x=14,
    ∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
    (1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,
    根据题意得:y(36﹣1y)=172,
    整理得:y1﹣18y+85=2.
    ∵△=(﹣18)1﹣4×1×85=﹣16<2,
    ∴该方程无解,
    ∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.

    相关试卷

    湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了方程的解是.等内容,欢迎下载使用。

    广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。

    2022届孝感市八校联谊重点达标名校中考数学模拟精编试卷含解析: 这是一份2022届孝感市八校联谊重点达标名校中考数学模拟精编试卷含解析,共23页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map