搜索
    上传资料 赚现金
    英语朗读宝

    2022届黑龙江省哈尔滨市第四十一中学中考数学考试模拟冲刺卷含解析

    2022届黑龙江省哈尔滨市第四十一中学中考数学考试模拟冲刺卷含解析第1页
    2022届黑龙江省哈尔滨市第四十一中学中考数学考试模拟冲刺卷含解析第2页
    2022届黑龙江省哈尔滨市第四十一中学中考数学考试模拟冲刺卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届黑龙江省哈尔滨市第四十一中学中考数学考试模拟冲刺卷含解析

    展开

    这是一份2022届黑龙江省哈尔滨市第四十一中学中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了将一副三角板,下列解方程去分母正确的是,在直角坐标系中,已知点P等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是(  )
    A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7
    2.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是(  )
    A. B. C. D.
    3.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
    A.8或10 B.8 C.10 D.6或12
    4.计算2a2+3a2的结果是( )
    A.5a4 B.6a2 C.6a4 D.5a2
    5.函数的图象上有两点,,若,则( )
    A. B. C. D.、的大小不确定
    6.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )

    A.60° B.65° C.55° D.50°
    7.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于(  )

    A.75° B.90° C.105° D.115°
    8.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:
    ①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    9.下列解方程去分母正确的是( )
    A.由,得2x﹣1=3﹣3x
    B.由,得2x﹣2﹣x=﹣4
    C.由,得2y-15=3y
    D.由,得3(y+1)=2y+6
    10.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是(  )
    A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
    B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
    C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
    D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
    11.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
    A. B. C. D.
    12.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是(  )

    A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是____________.

    14.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.

    15.估计无理数在连续整数___与____之间.
    16.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.

    17.4是_____的算术平方根.
    18.计算的结果为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC交于点F.
    (1)求证:FD=CD;
    (2)若AE=8,tan∠E=,求⊙O的半径.

    20.(6分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.
    (1)求k和b的值;
    (2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;
    (3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.

    21.(6分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.

    22.(8分)(1)化简:
    (2)解不等式组.
    23.(8分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
    (1)求证:DE是⊙O的切线;
    (2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
    (3)在(2)的条件下,若OF=1,求圆O的半径.

    24.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
    (1)求该抛物线的解析式;
    (2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
    (3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
    25.(10分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=2,CD=1,求FE的长.

    26.(12分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.
    (1)函数y=+1的图象可以由我们熟悉的函数   的图象向上平移   个单位得到;
    (2)函数y=+1的图象与x轴、y轴交点的情况是:   ;
    (3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是   .
    27.(12分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
    (1)求这个二次函数的解析式;
    (2)连接AC、BC,判断△ABC的形状,并证明;
    (3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.
    【详解】
    解:解不等式3x﹣m+1>0,得:x>,
    ∵不等式有最小整数解2,
    ∴1≤<2,
    解得:4≤m<7,
    故选A.
    【点睛】
    本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.
    2、A
    【解析】
    根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.
    【详解】
    选项A,是轴对称图形,不是中心对称图形,故可以选;
    选项B,是轴对称图形,也是中心对称图形,故不可以选;
    选项C,不是轴对称图形,是中心对称图形,故不可以选;
    选项D,是轴对称图形,也是中心对称图形,故不可以选.
    故选A
    【点睛】
    本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
    错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.

    3、C
    【解析】
    试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
    ②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
    综上所述,它的周长是4.故选C.
    考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
    4、D
    【解析】
    直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
    【详解】
    2a2+3a2=5a2.
    故选D.
    【点睛】
    本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
    5、A
    【解析】
    根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.
    【详解】
    解:∵y=-1x1-8x+m,
    ∴此函数的对称轴为:x=-=-=-1,
    ∵x1<x1<-1,两点都在对称轴左侧,a<0,
    ∴对称轴左侧y随x的增大而增大,
    ∴y1<y1.
    故选A.
    【点睛】
    此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.
    6、A
    【解析】
    试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
    解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
    ∴∠BCD+∠CDE=540°﹣300°=240°,
    ∵∠BCD、∠CDE的平分线在五边形内相交于点O,
    ∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
    ∴∠P=180°﹣120°=60°.
    故选A.
    考点:多边形内角与外角;三角形内角和定理.
    7、C
    【解析】
    分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
    详解:∵AB∥EF,
    ∴∠BDE=∠E=45°,
    又∵∠A=30°,
    ∴∠B=60°,
    ∴∠1=∠BDE+∠B=45°+60°=105°,
    故选C.
    点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    8、C
    【解析】
    首先根据抛物线的开口方向可得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x1<﹣1、0<x2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断
    【详解】
    由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0;
    ①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;
    ②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;
    ③抛物线对称轴位于y轴的左侧,则a、b同号,又c>0,故abc>0,所以③不正确;
    ④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;
    因此正确的结论是①②④.
    故选:C.
    【点睛】
    本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.
    9、D
    【解析】
    根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
    【详解】
    A.由,得:2x﹣6=3﹣3x,此选项错误;
    B.由,得:2x﹣4﹣x=﹣4,此选项错误;
    C.由,得:5y﹣15=3y,此选项错误;
    D.由,得:3( y+1)=2y+6,此选项正确.
    故选D.
    【点睛】
    本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
    10、D
    【解析】
    把点P的横坐标减4,纵坐标减3可得P1的坐标;
    让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
    让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
    【详解】
    ∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
    ∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
    ∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
    故选D.
    【点睛】
    本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
    11、B
    【解析】
    由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
    故选B.
    12、C
    【解析】
    试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.
    考点:圆锥的计算;几何体的表面积.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、15°
    【解析】
    分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC的度数.
    详解:∵AB=AC,∠BAC=50°, ∴∠ABC=∠ACB=(180°-50°)=65°,
    ∵MN为AB的中垂线, ∴∠ABD=∠BAC=50°, ∴∠DBC=65°-50°=15°.
    点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.4
    14、或或1
    【解析】
    如图所示:
    ①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
    ②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
    ③当PA=PE时,底边AE=1;
    综上所述:等腰三角形AEP的对边长为或或1;
    故答案为或或1.

    15、3 4
    【解析】
    先找到与11相邻的平方数9和16,求出算术平方根即可解题.
    【详解】
    解:∵,
    ∴,
    ∴无理数在连续整数3与4之间.
    【点睛】
    本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
    16、1
    【解析】
    过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.
    【详解】
    解:过A作x轴垂线,过B作x轴垂线,

    点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
    ∴A(1,1),B(2,),
    ∵AC∥BD∥y轴,
    ∴C(1,k),D(2,),
    ∵△OAC与△ABD的面积之和为,

    S△ABD=S梯形AMND﹣S梯形AAMNB,

    ∴k=1,
    故答案为1.
    【点睛】
    本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.
    17、16.
    【解析】
    试题解析:∵42=16,
    ∴4是16的算术平方根.
    考点:算术平方根.
    18、﹣2
    【解析】
    根据分式的运算法则即可得解.
    【详解】
    原式===,
    故答案为:.
    【点睛】
    本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2);
    【解析】
    (1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD,进而得出∠EAD=∠CAD,进而判断出△ADF≌△ADC,即可得出结论;(2)过点D作DG⊥AE,垂足为G.依据等腰三角形的性质可得到EG=AG=1,然后在Rt△GEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O的半径的长.
    【详解】
    (1)∵AC 是⊙O 的切线,
    ∴BA⊥AC,
    ∴∠CAD+∠BAD=90°,
    ∵AB 是⊙O 的直径,
    ∴∠ADB=90°,
    ∴∠B+∠BAD=90°,
    ∴∠CAD=∠B,
    ∵DA=DE,
    ∴∠EAD=∠E,
    又∵∠B=∠E,
    ∴∠B=∠EAD,
    ∴∠EAD=∠CAD,
    在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,
    ∴△ADF≌△ADC,
    ∴FD=CD.
    (2)如下图所示:过点D作DG⊥AE,垂足为G.

    ∵DE=AE,DG⊥AE,
    ∴EG=AG=AE=1.
    ∵tan∠E=,
    ∴=,即=,解得DG=1.
    ∴ED==2.
    ∵∠B=∠E,tan∠E=,
    ∴sin∠B=,即,解得AB=.
    ∴⊙O的半径为.
    【点睛】
    本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键.
    20、 (1)k=-,b=1;(1) (0,1)和
    【解析】
    分析:(1) 由直线经过点,可得.由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P.则EE′⊥AB,P为EE′的中点,列方程组,求解即可得到a的值,进而得到答案.
    详解:(1) 由直线经过点,可得.
    由抛物线的对称轴是直线,可得.
    ∵直线与x轴、y轴分别相交于点、,
    ∴点的坐标是,点的坐标是.
    ∵抛物线的顶点是点,∴点的坐标是.
    ∵点是轴上一点,∴设点的坐标是.
    ∵△BCG与△BCD相似,又由题意知,,
    ∴△BCG与△相似有两种可能情况:
    ①如果,那么,解得,∴点的坐标是.
    ②如果,那么,解得,∴点的坐标是.
    综上所述:符合要求的点有两个,其坐标分别是和 .
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P,则EE′⊥AB,P为EE′的中点,∴ ,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.
    当a=-1时,=;
    当a=1时,=;
    ∴点的坐标是或.

    点睛:本题是二次函数的综合题.考查了二次函数的性质、解析式的求法以及相似三角形的性质.解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为-1和P是EE′的中点.
    21、⊙O的半径为.
    【解析】
    如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
    【详解】
    解:如图,连接OA.交BC于H.

    ∵点A为的中点,
    ∴OA⊥BD,BH=DH=4,
    ∴∠AHC=∠BHO=90°,
    ∵,AC=9,
    ∴AH=3,
    设⊙O的半径为r,
    在Rt△BOH中,∵BH2+OH2=OB2,
    ∴42+(r﹣3)2=r2,
    ∴r=,
    ∴⊙O的半径为.
    【点睛】
    本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    22、(1);(2)﹣2<x

    相关试卷

    黑龙江省哈尔滨市美加外国语校2023年中考数学考试模拟冲刺卷含解析:

    这是一份黑龙江省哈尔滨市美加外国语校2023年中考数学考试模拟冲刺卷含解析,共18页。

    黑龙江省哈尔滨市南岗区萧红中学2022年中考数学考试模拟冲刺卷含解析:

    这是一份黑龙江省哈尔滨市南岗区萧红中学2022年中考数学考试模拟冲刺卷含解析,共29页。试卷主要包含了单项式2a3b的次数是等内容,欢迎下载使用。

    黑龙江省哈尔滨市阿城区朝鲜族中学2022年中考数学考试模拟冲刺卷含解析:

    这是一份黑龙江省哈尔滨市阿城区朝鲜族中学2022年中考数学考试模拟冲刺卷含解析

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map