年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年江苏省兴化市顾庄区中考三模数学试题含解析

    2021-2022学年江苏省兴化市顾庄区中考三模数学试题含解析第1页
    2021-2022学年江苏省兴化市顾庄区中考三模数学试题含解析第2页
    2021-2022学年江苏省兴化市顾庄区中考三模数学试题含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省兴化市顾庄区中考三模数学试题含解析

    展开

    这是一份2021-2022学年江苏省兴化市顾庄区中考三模数学试题含解析,共27页。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(  )

    A. B. C. D.
    2.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    3.下列计算,正确的是(  )
    A. B.
    C.3 D.
    4.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是( )
    A.k>-1 B.k≥-1 C.k<-1 D.k≤-1
    5.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).



























    A.只有一个交点 B.有两个交点,且它们分别在轴两侧
    C.有两个交点,且它们均在轴同侧 D.无交点
    6.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )

    A. B. C. D.
    7.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )

    A.6 B.8
    C.10 D.12
    8.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )
    A.= B.= C.= D.=
    9.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )

    A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
    10. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
    A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
    11.-5的倒数是
    A. B.5 C.- D.-5
    12.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是(  )

    A.小亮骑自行车的平均速度是12 km/h
    B.妈妈比小亮提前0.5 h到达姥姥家
    C.妈妈在距家12 km处追上小亮
    D.9:30妈妈追上小亮
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为__________.

    14.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)

    15.如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为__________.

    16.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.
    17.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
    18.若关于x的方程有两个相等的实数根,则m的值是_________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.
    (1)求证:;
    (2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.
    ①如图2,若∠AFE=45°,求的值;
    ②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.

    20.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
    (1)本次抽样调查共抽取了多少名学生?
    (2)求测试结果为C等级的学生数,并补全条形图;
    (3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
    (4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

    21.(6分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD.如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F.如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E.

    22.(8分) “知识改变命运,科技繁荣祖国”.在举办一届全市科技运动会上.下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:

    (1)该校参加航模比赛的总人数是   人,空模所在扇形的圆心角的度数是   ;
    (2)并把条形统计图补充完整;
    (3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?
    23.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
    根据图示填写下表;


    平均数(分)

    中位数(分)

    众数(分)

    初中部



    85



    高中部

    85



    100

    (2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
    24.(10分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
    (1)求该抛物线的解析式;
    (2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
    (3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.

    25.(10分)解方程(2x+1)2=3(2x+1)
    26.(12分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.
    (1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);
    ①;②;③;④;⑤;⑥;
    (2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;
    (3)如果与相似,但面积不相等,求此时正方形的边长.

    27.(12分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
    (1)如图1,当旋转角为90°时,求BB′的长;
    (2)如图2,当旋转角为120°时,求点O′的坐标;
    (3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:

    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    2、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
    【详解】
    ∵反比例函数y=中,k=1>0,
    ∴此函数图象的两个分支在一、三象限,
    ∵x1<x2<0<x1,
    ∴A、B在第三象限,点C在第一象限,
    ∴y1<0,y2<0,y1>0,
    ∵在第三象限y随x的增大而减小,
    ∴y1>y2,
    ∴y2<y1<y1.
    故选D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
    3、B
    【解析】
    根据二次根式的加减法则,以及二次根式的性质逐项判断即可.
    【详解】
    解:∵=2,∴选项A不正确;
    ∵=2,∴选项B正确;
    ∵3﹣=2,∴选项C不正确;
    ∵+=3≠,∴选项D不正确.
    故选B.
    【点睛】
    本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    4、C
    【解析】
    试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
    由题意得,解得
    故选C.
    考点:一元二次方程的根的判别式
    点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
    5、B
    【解析】
    根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.
    【详解】
    解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上
    则该二次函数的图像与轴有两个交点,且它们分别在轴两侧
    故选B.
    【点睛】
    本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.
    6、C
    【解析】
    设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
    【详解】
    设,则.
    由折叠的性质,得.
    因为点是的中点,
    所以.
    在中,
    由勾股定理,得,
    即,
    解得,
    故线段的长为4.
    故选C.
    【点睛】
    此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.
    7、D
    【解析】
    根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.
    【详解】
    解:∵四边形ABCD为正方形,

    ∴AB=CD,AB∥CD,
    ∴∠ABF=∠GDF,∠BAF=∠DGF,
    ∴△ABF∽△GDF,
    ∴=2,
    ∴AF=2GF=4,
    ∴AG=2.
    ∵AD∥BC,DG=CG,
    ∴=1,
    ∴AG=GE
    ∴AE=2AG=1.
    故选:D.
    【点睛】
    本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.
    8、D
    【解析】
    根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.
    【详解】
    解:当或时,,
    即或.
    所以D选项是正确的.
    【点睛】
    本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.
    9、D
    【解析】
    根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
    【详解】
    ∵直线EF∥GH,
    ∴∠2=∠ABC+∠1=30°+20°=50°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    10、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    567000=5.67×105,
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    11、C
    【解析】
    若两个数的乘积是1,我们就称这两个数互为倒数.
    【详解】
    解:5的倒数是.
    故选C.
    12、D
    【解析】
    根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
    【详解】
    解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
    ∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
    B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
    ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
    C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
    ∴小亮走的路程为:1×12=12km,
    ∴妈妈在距家12km出追上小亮,故正确;
    D、由图象可知,当t=9时,妈妈追上小亮,故错误;
    故选D.
    【点睛】
    本题考查函数图像的应用,从图像中读取关键信息是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4
    【解析】
    首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.
    【详解】
    在Rt△AOB中,∵∠ABO=30°,AO=1,
    ∴AB=2,BO=
    ①当点P从O→B时,如图1、图2所示,点Q运动的路程为,

    ②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°

    ∵∠ABO=30°
    ∴∠BAO=60°
    ∴∠OQD=90°﹣60°=30°
    ∴AQ=2AC,
    又∵CQ=,
    ∴AQ=2
    ∴OQ=2﹣1=1,则点Q运动的路程为QO=1,
    ③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,
    ④当点P从A→O时,点Q运动的路程为AO=1,
    ∴点Q运动的总路程为:+1+2﹣+1=4
    故答案为4.
    考点:解直角三角形
    14、①②③⑤
    【解析】
    根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
    【详解】
    由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
    ∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,

    ∴2a+b>0,
    故③正确,
    由图象可得顶点纵坐标小于﹣2,则④错误,
    当x=1时,y=a+b+c<0,故⑥错误
    故答案为:①②③⑤
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
    线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    15、
    【解析】
    根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.
    【详解】
    如图,
    在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),
    ∵y=﹣x2+2x+3=﹣(x-1)2+4,
    ∴对称轴为x=1,顶点D(1,4),
    则点C关于对称轴的对称点E的坐标为(2,3),
    作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),
    连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,
    四边形EDFG的周长=DE+DF+FG+GE
    =DE+D′F+FG+GE′
    =DE+D′E′


    ∴四边形EDFG周长的最小值是.

    【点睛】
    本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.
    16、
    【解析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    ∵在0.、、、这四个实数种,有理数有0.、、这3个,
    ∴抽到有理数的概率为,
    故答案为.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    17、
    【解析】
    列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
    【详解】
    如图:

    共有12种情况,在第三象限的情况数有2种,
    故不再第三象限的共10种,
    不在第三象限的概率为,
    故答案为.
    【点睛】
    本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
    18、m=-
    【解析】
    根据题意可以得到△=0,从而可以求得m的值.
    【详解】
    ∵关于x的方程有两个相等的实数根,
    ∴△=,
    解得:.
    故答案为.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)见解析;(2)①;②cos∠AFE=
    【解析】
    (1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;
    (2)①如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;②如图3,作交AD于点T,作于H,证,设CF=2,则CE=6,可设AT=x,则TF=3x,,,分别用含x的代数式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出结论.
    【详解】
    (1)设BE=EC=2,则AB=BC=4,
    ∵,
    ∴,
    ∵,
    ∴∠FEC=∠EAB,
    又∴,
    ∴,
    ∴,
    即,
    ∴CF=1,
    则,
    ∴;
    (2)①如图2,过F作交AD于点G,
    ∵,
    ∴和是等腰直角三角形,
    ∴,,
    ∴∠AGF=∠C,
    又∵,
    ∴∠GAF=∠CFE,
    ∴,
    ∴,
    又∵GF=DF,
    ∴;

    ②如图3,作交AD于点T,作于H,
    则,
    ∴,
    ∴∠ATF=∠C,
    又∵,且∠D=∠AFE,
    ∴∠TAF=∠CFE,
    ∴,
    ∴,
    设CF=2,则CE=6,可设AT=x,则TF=3x,,
    ∴,且,
    由,得,
    解得x=5,
    ∴.

    【点睛】
    本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.
    20、(1)50;(2)16;(3)56(4)见解析
    【解析】
    (1)用A等级的频数除以它所占的百分比即可得到样本容量;
    (2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
    (4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
    【详解】
    (1)10÷20%=50(名)
    答:本次抽样调查共抽取了50名学生.
    (2)50-10-20-4=16(名)
    答:测试结果为C等级的学生有16名.
    图形统计图补充完整如下图所示:

    (3)700×=56(名)
    答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
    (4)画树状图为:

    共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
    所以抽取的两人恰好都是男生的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    21、(1)详见解析;(2)详见解析.
    【解析】
    (1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;
    (2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.
    【详解】
    (1)如图所示,CD 即为所求;

    (2)如图,CD 即为所求.
    【点睛】
    本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.
    22、(1)24,120°;(2)见解析;(3)1000人
    【解析】
    (1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果.
    【详解】
    解:(1)该校参加航模比赛的总人数是6÷25%=24(人),
    则参加空模人数为24﹣(6+4+6)=8(人),
    ∴空模所在扇形的圆心角的度数是360°×=120°,
    故答案为:24,120°;
    (2)补全条形统计图如下:

    (3)估算今年参加航模比赛的获奖人数约是2500×=1000(人).
    【点睛】
    此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
    23、(1)


    平均数(分)

    中位数(分)

    众数(分)

    初中部

    85

    85

    85

    高中部

    85

    80

    100

    (2)初中部成绩好些(3)初中代表队选手成绩较为稳定
    【解析】
    解:(1)填表如下:


    平均数(分)

    中位数(分)

    众数(分)

    初中部

    85

    85

    85

    高中部

    85

    80

    100

    (2)初中部成绩好些.
    ∵两个队的平均数都相同,初中部的中位数高,
    ∴在平均数相同的情况下中位数高的初中部成绩好些.
    (3)∵,

    ∴<,因此,初中代表队选手成绩较为稳定.
    (1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.
    (2)根据平均数和中位数的统计意义分析得出即可.
    (3)分别求出初中、高中部的方差比较即可.
    24、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).
    【解析】
    分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.
    详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,
    则点A(﹣2,0),B(0,2),
    把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.
    ∴该抛物线的解析式为y=﹣x2﹣x+2;
    (2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
    则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;
    (3)如图,作PE⊥x轴于点E,交AB于点D,
    在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
    在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
    设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
    即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).

    点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.
    25、x1=-,x2=1
    【解析】
    试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.
    试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.
    点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.
    26、(1)④⑤;(2);(3)或.
    【解析】
    (1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,,设正方形的边长为x,则,,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用勾股定理和三角函数可判断在变化,在变化,在变化;
    (2)易得四边形为矩形,则,证明,利用相似比可得到y与x的关系式;
    (3)由于,与相似,且面积不相等,利用相似比得到,讨论:当点P在点F点右侧时,则,所以,当点P在点F点左侧时,则,所以,然后分别解方程即可得到正方形的边长.
    【详解】
    (1)如图,作于M,交于N,
    在中,∵,
    设,则,
    ∵,
    ∴,解得,
    ∴,,
    设正方形的边长为x,
    在中,∵,
    ∴,
    ∴,
    在中,,
    ∴为定值;
    ∵,
    ∴,
    ∴为定值;
    在中,,
    而在变化,
    ∴在变化,在变化,
    ∴在变化,
    所以和是始终保持不变的量;

    故答案为:④⑤
    (2)∵MN⊥AP,DEFG是正方形,
    ∴四边形为矩形,
    ∴,
    ∵,
    ∴,
    ∴,
    即,

    (3)∵,与相似,且面积不相等,
    ∴,即,
    ∴,
    当点P在点F点右侧时,AP=AF+PF==,
    ∴,
    解得,
    当点P在点F点左侧时,,
    ∴,
    解得,

    综上所述,正方形的边长为或.
    【点睛】
    本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.
    27、(1)5;(2)O'(,);(3)P'(,).
    【解析】
    (1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
    (2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
    (3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
    【详解】
    解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;
    (2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();
    (3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
    ∵点C与点A关于y轴对称,∴C(﹣3,0).
    ∵O'(),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.
    ∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().

    【点睛】
    本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.

    相关试卷

    江苏省兴化市顾庄学区2021-2022学年中考数学模拟试题含解析:

    这是一份江苏省兴化市顾庄学区2021-2022学年中考数学模拟试题含解析,共24页。试卷主要包含了八边形的内角和为等内容,欢迎下载使用。

    江苏省兴化顾庄等三校2021-2022学年中考数学模试卷含解析:

    这是一份江苏省兴化顾庄等三校2021-2022学年中考数学模试卷含解析,共21页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2022年江苏省泰州市兴化市顾庄区中考数学五模试卷含解析:

    这是一份2022年江苏省泰州市兴化市顾庄区中考数学五模试卷含解析,共17页。试卷主要包含了估计的值在,如图,O为原点,点A的坐标为,比较4,,的大小,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map