2022届江苏省常州市武进星辰实验校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列几何体中,主视图和左视图都是矩形的是( )
A. B. C. D.
2.下列图案中,是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
3.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4
4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
A.8或10 B.8 C.10 D.6或12
5.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2) B.(2,4),(3,1)
C.(2,2),(3,1) D.(3,1),(2,2)
6.计算tan30°的值等于( )
A. B. C. D.
7.等腰三角形的两边长分别为5和11,则它的周长为( )
A.21 B.21或27 C.27 D.25
8.已知点,与点关于轴对称的点的坐标是( )
A. B. C. D.
9.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为( )
A. B. C. D.
10.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )
A.3 B.4 C. D.5
11.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是
已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
求证:∽.
证明:又,,,,∽.
A. B. C. D.
12.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于( )
A.8 B.4 C.12 D.16
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB为⊙O的直径,C、D为⊙O上的点,.若∠CAB=40°,则∠CAD=_____.
14.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.
15.计算:-=________.
16.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为 .
17.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.
18.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
20.(6分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.
(1)求证:;
(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果与相似,求BP的长.
21.(6分)已知,关于x的方程x2﹣mx+m2﹣1=0,
(1)不解方程,判断此方程根的情况;
(2)若x=2是该方程的一个根,求m的值.
22.(8分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
23.(8分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,.
(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出时,的取值范围;
(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由.
24.(10分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.
25.(10分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.
(1)求证:△ADC≌△FDB;
(2)求证:
(3)判断△ECG的形状,并证明你的结论.
26.(12分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
观点
频数
频率
A
a
0.2
B
12
0.24
C
8
b
D
20
0.4
(1)参加本次讨论的学生共有 人;表中a= ,b= ;
(2)在扇形统计图中,求D所在扇形的圆心角的度数;
(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
27.(12分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
【详解】
A. 主视图为圆形,左视图为圆,故选项错误;
B. 主视图为三角形,左视图为三角形,故选项错误;
C. 主视图为矩形,左视图为矩形,故选项正确;
D. 主视图为矩形,左视图为圆形,故选项错误.
故答案选:C.
【点睛】
本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
2、D
【解析】
分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.
详解:A.是轴对称图形,也是中心对称图形,故此选项错误;
B.不是轴对称图形,也不是中心对称图形,故此选项错误;
C.不是轴对称图形,是中心对称图形,故此选项错误;
D.是轴对称图形,不是中心对称图形,故此选项正确.
故选D.
点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
3、D
【解析】
试题分析:A.∵∠1=∠3,∴a∥b,故A正确;
B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;
C. ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;
D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.
故选D.
考点:平行线的判定.
4、C
【解析】
试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
综上所述,它的周长是4.故选C.
考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
5、C
【解析】
直接利用位似图形的性质得出对应点坐标乘以得出即可.
【详解】
解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点的坐标为:(2,2),(3,1).
故选C.
【点睛】
本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
6、C
【解析】
tan30°= .故选C.
7、C
【解析】
试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.
考点:等腰三角形的性质;三角形三边关系.
8、C
【解析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
【详解】
解:点,与点关于轴对称的点的坐标是,
故选:C.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
9、B
【解析】
根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
故选B.
点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
10、B
【解析】
连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
【详解】
连接DF,
∵四边形ABCD是矩形
∴
在中,
故选:B.
【点睛】
本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.
11、B
【解析】
根据平行线的性质可得到两组对应角相等,易得解题步骤;
【详解】
证明:,
,
又,
,
∽.
故选B.
【点睛】
本题考查了相似三角形的判定与性质;关键是证明三角形相似.
12、A
【解析】
∵AB的中垂线交BC于D,AC的中垂线交BC于E,
∴DA=DB,EA=EC,
则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,
故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、25°
【解析】
连接BC,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.
【详解】
如图,连接BC,BD,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠CAB=40°,
∴∠ABC=50°,
∵,
∴∠ABD=∠CBD=∠ABC=25°,
∴∠CAD=∠CBD=25°.
故答案为25°.
【点睛】
本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.
14、1
【解析】
先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.
【详解】
∵a,b分别是1的两个平方根,
∴
∵a,b分别是1的两个平方根,
∴a+b=0,
∴ab=a×(﹣a)=﹣a2=﹣1,
∴a+b﹣ab=0﹣(﹣1)=1,
故答案为:1.
【点睛】
此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.
15、2
【解析】
试题解析:原式
故答案为
16、y=(x﹣3)2+2
【解析】
根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.
【详解】
解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).
向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,
故答案为:y=(x﹣3)2+2.
【点睛】
此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
17、1.
【解析】
试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).
故答案为1.
考点:平面展开最短路径问题
18、(2,2).
【解析】
连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.
【详解】
如图,连结OA,
OA==5,
∵B为⊙O内一点,
∴符合要求的点B的坐标(2,2)答案不唯一.
故答案为:(2,2).
【点睛】
考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
20、(1)见解析;(2);(3)当或8时,与相似.
【解析】
(1)想办法证明即可解决问题;
(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;
(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;
【详解】
(1)证明:四边形ABCD是等腰梯形,
,
,
,
,
,
,
.
(2)解:作于M,于N.则四边形是矩形.
在中,,
,
,
,
,
.
(3)解:,
,
,
相似时,与相似,
,
当时,,此时,
当时,,此时,
综上所述,当PB=5或8时,与△相似.
【点睛】
本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.
21、(1)证明见解析;(2)m=2或m=1.
【解析】
(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
(2)将x=2代入方程得到关于m的方程,解之可得.
【详解】
(1)∵△=(﹣m)2﹣4×1×(m2﹣1)
=m2﹣m2+4
=4>0,
∴方程有两个不相等的实数根;
(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
整理,得:m2﹣8m+12=0,
解得:m=2或m=1.
【点睛】
本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
22、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
【解析】
(1)根据①②③的规律即可得出第④个等式;
(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
【详解】
(1)∵22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
∴第④个等式为52﹣2×4=42+1,
故答案为:52﹣2×4=42+1,
(2)第n个等式为(n+1)2﹣2n=n2+1.
(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
【点睛】
本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
23、(1); ;(2)或;(3)存在,或或或.
【解析】
(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;
(2)利用图象直接得出结论;
(3)分、、三种情况讨论,即可得出结论.
【详解】
(1)一次函数与反比例函数,相交于点,,
∴把代入得:,
∴,
∴反比例函数解析式为,
把代入得:,
∴,
∴点C的坐标为,
把,代入得:,
解得:,
∴一次函数解析式为;
(2)根据函数图像可知:
当或时,一次函数的图象在反比例函数图象的上方,
∴当或时,;
(3)存在或或或时,为等腰三角形,理由如下:
过作轴,交轴于,
∵直线与轴交于点,
∴令得,,
∴点A的坐标为,
∵点B的坐标为,
∴点D的坐标为,
∴,
①当时,则,
,
∴点P的坐标为:、;
②当时,
是等腰三角形,,
平分,
,
∵点D的坐标为,
∴点P的坐标为,即;
③当时,如图:
设,
则,
在中,,,,
由勾股定理得:
,
,
解得:,
,
∴点P的坐标为,即,
综上所述,当或或或时,为等腰三角形.
【点睛】
本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.
24、骑共享单车从家到单位上班花费的时间是1分钟.
【解析】
试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.
试题解析:设骑共享单车从家到单位上班花费x分钟,
依题意得:
解得x=1.
经检验,x=1是原方程的解,且符合题意.
答:骑共享单车从家到单位上班花费的时间是1分钟.
25、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;
(2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;
(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.
【详解】
解:(1)∵AB=BC,BE平分∠ABC
∴BE⊥AC
∵CD⊥AB
∴∠ACD=∠ABE(同角的余角相等)
又∵CD=BD
∴△ADC≌△FDB
(2)∵AB=BC,BE平分∠ABC
∴AE=CE
则CE=AC
由(1)知:△ADC≌△FDB
∴AC=BF
∴CE=BF
(3)△ECG为等腰直角三角形,理由如下:
由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,
则∠EGC=2∠CBG=∠ABC=45°,
又∵BE⊥AC,
故△ECG为等腰直角三角形.
【点睛】
本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.
26、(1)50、10、0.16;(2)144°;(3).
【解析】
(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,
(2)用360°乘以D观点的频率即可得;
(3)画出树状图,然后根据概率公式列式计算即可得解
【详解】
解:(1)参加本次讨论的学生共有12÷0.24=50,
则a=50×0.2=10,b=8÷50=0.16,
故答案为50、10、0.16;
(2)D所在扇形的圆心角的度数为360°×0.4=144°;
(3)根据题意画出树状图如下:
由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,
所以选中观点D(合理竞争,合作双赢)的概率为.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
27、 (1)560;(2)54;(3)补图见解析;(4)18000人
【解析】
(1)本次调查的样本容量为224÷40%=560(人);
(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;
(3)“讲解题目”的人数是:560−84−168−224=84(人).
(4)60000×=18000(人),
答:在课堂中能“独立思考”的学生约有18000人.
江苏省常州市武进星辰实验学校2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份江苏省常州市武进星辰实验学校2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。
2023-2024学年江苏省常州市武进星辰实验学校八上数学期末学业水平测试试题含答案: 这是一份2023-2024学年江苏省常州市武进星辰实验学校八上数学期末学业水平测试试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,点M,已知,则的值是,对于,,,,,,其中分式有,若,则点在第象限等内容,欢迎下载使用。
2022-2023学年江苏省常州市武进星辰实验学校数学七年级第二学期期末监测模拟试题含答案: 这是一份2022-2023学年江苏省常州市武进星辰实验学校数学七年级第二学期期末监测模拟试题含答案,共6页。试卷主要包含了若是最简二次根式,则的值可能是等内容,欢迎下载使用。