2022届江苏省海安县白甸镇初级中学十校联考最后数学试题含解析
展开
这是一份2022届江苏省海安县白甸镇初级中学十校联考最后数学试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
2.下列计算正确的是( )
A. B. C. D.
3.如图,由四个正方体组成的几何体的左视图是( )
A. B. C. D.
4.在0.3,﹣3,0,﹣这四个数中,最大的是( )
A.0.3 B.﹣3 C.0 D.﹣
5.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为( )
A.83×105 B.0.83×106 C.8.3×106 D.8.3×107
6.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是( )
A. B. C. D.
7.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
A. B. C. D.
8.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )
A. B.2 C. D.
9.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是( )
A. B. C. D.
10.某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
12.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)
13.计算:的值是______________.
14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )
A. B. C. D.
15.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.
16.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.
17.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.
三、解答题(共7小题,满分69分)
18.(10分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
(1)求甲、乙两队合作完成这项工程需要多少天?
(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
19.(5分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.
20.(8分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请判断四边形AEA′F的形状,并说明理由;
(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
21.(10分)化简求值:,其中.
22.(10分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:
收集数据
从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:
八年级
78
86
74
81
75
76
87
70
75
90
75
79
81
70
74
80
86
69
83
77
九年级
93
73
88
81
72
81
94
83
77
83
80
81
70
81
73
78
82
80
70
40
整理、描述数据
将成绩按如下分段整理、描述这两组样本数据:
成绩(x)
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
八年级人数
0
0
1
11
7
1
九年级人数
1
0
0
7
10
2
(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)
分析数据
两组样本数据的平均数、中位数、众数、方差如表所示:
年级
平均数
中位数
众数
方差
八年级
78.3
77.5
75
33.6
九年级
78
80.5
a
52.1
(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)
23.(12分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.
24.(14分)问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
2、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
3、B
【解析】
从左边看可以看到两个小正方形摞在一起,故选B.
4、A
【解析】
根据正数大于0,0大于负数,正数大于负数,比较即可
【详解】
∵-3<-<0<0.3
∴最大为0.3
故选A.
【点睛】
本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
5、C
【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.
【详解】
830万=8300000=8.3×106.
故选C
【点睛】
本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.
6、A
【解析】
设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.
解:设乙骑自行车的平均速度为x千米/时,由题意得:
=,
故选A.
7、D
【解析】
圆锥的侧面积=×80π×90=3600π(cm2) .
故选D.
8、C
【解析】
试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4
所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.
考点:圆周角定理;锐角三角函数的定义.
9、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.
【详解】
A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;
C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.
故选C.
【点睛】
本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.
10、D
【解析】
解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
故选D.
【点睛】
本题考查几何体的三视图.
二、填空题(共7小题,每小题3分,满分21分)
11、一
【解析】
试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
∴k﹣1<0且k+1<0, 解得:k<﹣1,
∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
考点:一次函数的性质
12、①②④
【解析】
①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.
【详解】
解:①连接OQ,OD,如图1.
易证四边形DOBP是平行四边形,从而可得DO∥BP.
结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
则有DQ=DA=1.
故①正确;
②连接AQ,如图4.
则有CP=,BP=.
易证Rt△AQB∽Rt△BCP,
运用相似三角形的性质可求得BQ=,
则PQ=,
∴.
故②正确;
③过点Q作QH⊥DC于H,如图4.
易证△PHQ∽△PCB,
运用相似三角形的性质可求得QH=,
∴S△DPQ=DP•QH=××=.
故③错误;
④过点Q作QN⊥AD于N,如图3.
易得DP∥NQ∥AB,
根据平行线分线段成比例可得,
则有,
解得:DN=.
由DQ=1,得cos∠ADQ=.
故④正确.
综上所述:正确结论是①②④.
故答案为:①②④.
【点睛】
本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
13、-1
【解析】
解:=-1.故答案为:-1.
14、C
【解析】
分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可
【详解】
由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则
当0<x≤2,s=x
当2<x≤3,s=1
所以刚开始的时候为正比例函数s=x图像,后面为水平直线,故选C
【点睛】
本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态
15、48°
【解析】
如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
【详解】
如图,在⊙O上取一点K,连接AK、KC、OA、OC.
∵四边形AKCB内接于圆,
∴∠AKC+∠ABC=180°,
∵∠ABC=114°,
∴∠AKC=66°,
∴∠AOC=2∠AKC=132°,
∵DA、DC分别切⊙O于A、C两点,
∴∠OAD=∠OCB=90°,
∴∠ADC+∠AOC=180°,
∴∠ADC=48°
故答案为48°.
【点睛】
本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
16、10, 1, 1
【解析】
作CD⊥x轴于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由线段垂直平分线的性质得出BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,由三角形面积公式即可得出△OMN的面积.
【详解】
解:作CD⊥x轴于D,CE⊥OB于E,如图所示:
由题意得:OA=1,OB=8,
∵∠AOB=90°,
∴AB==10;
∵点C的坐标(﹣2,4),
∴OC==1,OE=4,
∴BE=OB﹣OE=4,
∴OE=BE,
∴BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,
∴△OMN的面积S=×3×4=1;
故答案为:10,1,1.
【点睛】
本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.
17、(,),(-4,-5)
【解析】
求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.
【详解】
令y=0代入y=-x2-2x+3,
∴x=-3或x=1,
∴OA=1,OB=3,
令x=0代入y=-x2-2x+3,
∴y=3,
∴OC=3,
当点D在x轴下方时,
∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,
∵OB=OC,
∴∠CBO=45°,
∴BG=EG,OB=OC=3,
∴由勾股定理可知:BC=3,
设EG=x,
∴CG=3-x,
∵∠DCB=∠ACO.
∴tan∠DCB=tan∠ACO=,
∴,
∴x=,
∴BE=x=,
∴OE=OB-BE=,
∴E(-,0),
设CE的解析式为y=mx+n,交抛物线于点D2,
把C(0,3)和E(-,0)代入y=mx+n,
∴,解得:.
∴直线CE的解析式为:y=2x+3,
联立
解得:x=-4或x=0,
∴D2的坐标为(-4,-5)
设点E关于BC的对称点为F,
连接FB,
∴∠FBC=45°,
∴FB⊥OB,
∴FB=BE=,
∴F(-3,)
设CF的解析式为y=ax+b,
把C(0,3)和(-3,)代入y=ax+b
解得:,
∴直线CF的解析式为:y=x+3,
联立
解得:x=0或x=-
∴D1的坐标为(-,)
故答案为(-,)或(-4,-5)
【点睛】
本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.
三、解答题(共7小题,满分69分)
18、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天
【解析】
(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;
(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.
【详解】
(1)设甲、乙两队合作完成这项工程需要x天
根据题意得,,
解得 x=36,
经检验x=36是分式方程的解,
答:甲、乙两队合作完成这项工程需要36天,
(2)
设甲、乙需要合作y天,根据题意得,
,
解得y≤7
答:甲、乙两队至多要合作7天.
【点睛】
本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
19、(1)证明见解析;(2)
【解析】
(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;
(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.
【详解】
(1)连接BD,
∵AB为⊙O的直径,∴BD⊥AC,
∵D是AC的中点,∴BC=AB,
∴∠C=∠A=45°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)连接OD,由(1)可得∠AOD=90°,
∵⊙O的半径为2, F为OA的中点,
∴OF=1, BF=3,,
∴,
∵,
∴∠E=∠A,
∵∠AFD=∠EFB,
∴△AFD∽△EFB,
∴,即,
∴.
【点睛】
本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.
20、(1)四边形AEA′F为菱形.理由见解析;(2)1.
【解析】
(1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
【详解】
(1)四边形AEA′F为菱形.
理由如下:
∵AB=AC,
∴∠B=∠C,
∵EF∥BC,
∴∠AEF=∠B,∠AFE=∠C,
∴∠AEF=∠AFE,
∴AE=AF,
∵△AEF沿着直线EF向下翻折,得到△A′EF,
∴AE=A′E,AF=A′F,
∴AE=A′E=AF=A′F,
∴四边形AEA′F为菱形;
(2)∵四边形AEA′F是正方形,
∴∠A=90°,
∴△ABC为等腰直角三角形,
∴AB=AC=BC=×6=6,
∵正方形AEA′F的面积是△ABC的一半,
∴AE2=••6•6,
∴AE=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
21、
【解析】
分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
详解:原式
当时,
点睛:考查分式的混合运算,掌握运算顺序是解题的关键.
22、 (1)81;(2) 108人;(3)见解析.
【解析】
(1)根据众数的概念解答;
(2)求出九年级学生体质健康的优秀率,计算即可;
(3)分别从不同的角度进行评价.
【详解】
解:(1)由测试成绩可知,81分出现的次数最多,
∴a=81,
故答案为:81;
(2)九年级学生体质健康的优秀率为:,
九年级体质健康优秀的学生人数为:180×60%=108(人),
答:估计该校九年级体质健康优秀的学生人数为108人;
(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.
②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.
【点睛】
本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.
23、 (1)m≥﹣;(2)m的值为2.
【解析】
(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;
(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.
【详解】
(1)由题意知,(2m+2)2﹣4×1×m2≥1,
解得:m≥﹣;
(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,
∵α+β+αβ=1,
∴﹣(2m+2)+m2=1,
解得:m1=﹣1,m1=2,
由(1)知m≥﹣,
所以m1=﹣1应舍去,
m的值为2.
【点睛】
本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.
24、(1)1;2-;;(1)4+;(4)(200-25-40)米.
【解析】
(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.
(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.
(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.
【详解】
(1)①作AD的垂直平分线交BC于点P,如图①,
则PA=PD.
∴△PAD是等腰三角形.
∵四边形ABCD是矩形,
∴AB=DC,∠B=∠C=90°.
∵PA=PD,AB=DC,
∴Rt△ABP≌Rt△DCP(HL).
∴BP=CP.
∵BC=2,
∴BP=CP=1.
②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,
则DA=DP′.
∴△P′AD是等腰三角形.
∵四边形ABCD是矩形,
∴AD=BC,AB=DC,∠C=90°.
∵AB=4,BC=2,
∴DC=4,DP′=2.
∴CP′==.
∴BP′=2-.
③点A为圆心,AD为半径画弧,交BC于点P″,如图①,
则AD=AP″.
∴△P″AD是等腰三角形.
同理可得:BP″=.
综上所述:在等腰三角形△ADP中,
若PA=PD,则BP=1;
若DP=DA,则BP=2-;
若AP=AD,则BP=.
(1)∵E、F分别为边AB、AC的中点,
∴EF∥BC,EF=BC.
∵BC=11,
∴EF=4.
以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.
∵AD⊥BC,AD=4,
∴EF与BC之间的距离为4.
∴OQ=4
∴OQ=OE=4.
∴⊙O与BC相切,切点为Q.
∵EF为⊙O的直径,
∴∠EQF=90°.
过点E作EG⊥BC,垂足为G,如图②.
∵EG⊥BC,OQ⊥BC,
∴EG∥OQ.
∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
∴四边形OEGQ是正方形.
∴GQ=EO=4,EG=OQ=4.
∵∠B=40°,∠EGB=90°,EG=4,
∴BG=.
∴BQ=GQ+BG=4+.
∴当∠EQF=90°时,BQ的长为4+.
(4)在线段CD上存在点M,使∠AMB=40°.
理由如下:
以AB为边,在AB的右侧作等边三角形ABG,
作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.
设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,
过点O作OH⊥CD,垂足为H,如图③.
则⊙O是△ABG的外接圆,
∵△ABG是等边三角形,GP⊥AB,
∴AP=PB=AB.
∵AB=170,
∴AP=145.
∵ED=185,
∴OH=185-145=6.
∵△ABG是等边三角形,AK⊥BG,
∴∠BAK=∠GAK=40°.
∴OP=AP•tan40°
=145×
=25.
∴OA=1OP=90.
∴OH<OA.
∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.
∴∠AMB=∠AGB=40°,OM=OA=90..
∵OH⊥CD,OH=6,OM=90,
∴HM==40.
∵AE=200,OP=25,
∴DH=200-25.
若点M在点H的左边,则DM=DH+HM=200-25+40.
∵200-25+40>420,
∴DM>CD.
∴点M不在线段CD上,应舍去.
若点M在点H的右边,则DM=DH-HM=200-25-40.
∵200-25-40<420,
∴DM<CD.
∴点M在线段CD上.
综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,
此时DM的长为(200-25-40)米.
【点睛】
本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.
相关试卷
这是一份2023-2024学年江苏省海安县白甸镇初级中学数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了阅读理解等内容,欢迎下载使用。
这是一份江苏省海安县白甸镇初级中学2023-2024学年数学八上期末质量跟踪监视试题含答案,共8页。试卷主要包含了一次函数的图象经过等内容,欢迎下载使用。
这是一份2022-2023学年江苏省海安县白甸镇初级中学数学七年级第二学期期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,二次根式中的取值范围是,若分式有意义,则x满足的条件是等内容,欢迎下载使用。