二次函数学案无答案
展开题型一:二次函数与圆
【题型点拨】
1、抓住圆的概念,圆周角的性质定理以及直线与圆的位置关系等;
2、利用切线长定理以及垂径定理求解相关线段的长度以及利用K型相似或全等求解相关点坐标;
3、利用点到直线的距离公式表示动点圆的轨迹:(x-a)+(y-b)=R。
例1、如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.
(1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;
①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.
练习:1、在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣+1交于点C(4,﹣2).
(1)求抛物线的解析式;
(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.
(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.
2. 如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
(1)求抛物线C1的表达式;
(2)直接用含t的代数式表示线段MN的长;
(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.
题型二:二次函数与三角形
【疑难点拨】
1.首先要明确各种三角形的性质以及判定;
2.理解等腰三角形的特征,明确腰相等,可以任意两腰相等;(1)通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上 ;(2)通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。
3.理解直角三角形的特征,明确有一个角是直角,可以是任意的内角;
4.先研究三角形的性质,再将三角形放到二次函数图像中进行综合运用;
5.充分运用数学结合、转化、方程等数学思想来帮助解题。
6. 二次函数和等腰三角形考察的重点一般是以点,线段为依托,动点和函数相结合产生的问题。而与直角三角形组成的一般就是构造相似,构造圆以及勾股定理相组合的考点。
7. 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点, 使能构成某些特殊三角形,有以下常见的基本形式。(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐-考察。
例2、(与相似)如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A.B两点,并与过A点的直线y=﹣x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.
问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
(与等腰)2.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
3、(与直角)如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.
(1)写出C,D两点的坐标(用含a的式子表示);
(2)设S△BCD:S△ABD=k,求k的值;
(3)当△BCD是直角三角形时,求对应抛物线的解析式.
练习1. 如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点.
(1)求a、b的值;
(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;
(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.
2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).
(1)求A.B两点的坐标;
(2)求抛物线的解析式;
(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B.D两点间的一个动点(点P不与B.D两点重合),PA.PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.
3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.
题型三:二次函数与四边形
有关平行四边形的存在性问题
(1)已知三个定点,一个动点的情况在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标。
(2)已知两个定点,两个动点的情况
已知点C(0,2), B(4,0),点A为X轴上一个动点,试在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形(画出草图即可)
分以下几种情况:(1)以BC为对角线,BE为边;(2)以CE为对角线,BC为边;(3)以BE为对角线,BC为边;
(3)方法归纳:
先分类;(按对角线和边)
再画图;(画草图,确定目标点的大概位置)
后计算。(可利用三角形全等性质和平行四边形性质,准确求点的坐标)
例3、如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
练习1. 如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.
(1)求抛物线的解析式;
(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;
(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.
2.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.
(1)求抛物线的解析式及点D的坐标;
(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.
3、如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)求A、B两点的坐标及抛物线的对称轴;
(2)求直线l的函数表达式(其中k、b用含a的式子表示);
(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
题型四:二次函数与角关系问题
例4、在平面直角坐标系中,O为坐标原点,抛物线y=ax2−2ax+3与x轴负半轴交于A,与x轴的正半轴交于点B,与y轴的正半轴交于点C,且AB=4.
(1)如图1,求a的值;
(2)如图2,连接AC,BC,点D在第一象限内抛物线上,过D作DE∥AC,交线段BC于E,若DE=5√EC,求点D的坐标;
(3)如图3,在(2)的条件下,连接DC并延长,交x轴于点F,点P在第一象限的抛物线上,连接PF,作CQ⊥PF,交x轴于Q,连接PQ,当∠PQC=2∠PFQ时,求点P的坐标。
练习1.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;
(2)点D为直线AC上方抛物线上一动点;
①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;
②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.
题型五:二次函数与最值
例5、如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;
(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
练习1、已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称.
(1)求A、B两点坐标,并证明点A在直线l上;
(2)求二次函数解析式;
(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.
2、如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当FH=HP时,求m的值;
(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.
题型六:二次函数与韦达定理
韦达定理即一元二次方程中根与系数的关系。
对于,若其两根为,则有;
说明:利用根与系数的关系求值,要熟练掌握以下等式变形:
,
,
,
,
等等.韦达定理体现了整体思想.
例6.已知抛物线y=x与直线y=(k+2)x-(2k-1).
(1)证明:无论k为何实数,该抛物线与直线恒有两个不同的交点;
(2)设该抛物线与直线的两个不同的交点分别为A(x,y),B(x,y).若x、x均为整数,求实数k的值
练习1、在直角坐标系中,抛物线y=x+mx−m(m>0)与x轴交于A. B两点,若A. B两点到原点的距离分别为OA、OB,且满足1/OB−1/OA=2/3,求m= 。
2:已知抛物线C1的函数解析式为,若抛物线C1经
过点,方程的两根为,,且。
(1)求抛物线C1的顶点坐标.
(2)已知实数,请证明:≥,并说明为何值时才会有.
(3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设,
是C2上的两个不同点,且满足: ,,.请你用含有的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式。
(参考公式:在平面直角坐标系中,若,,则P,Q两点间的距离)
题型六:二次函数与几何三大变换
【疑难点拨】
1.图像平移
(1)沿Y轴平移
向上平移n个单位:
二次函数y=a(x-h)2+k(a ≠0)变为y=a(x-h)2+k+n
二次函数y=ax2+bx+c(a≠0)变为 y=ax2+bx+c+n
向下平移n个单位:
二次函数y=a(x-h)2+k(a ≠0)变为y=a(x-h)2+k+n
二次函数y=ax2+bx+c(a≠0) 变为y=a(x-h)2+k-n
(2沿x轴平移
向左平移m个单位:
二次函数y=a(x-h)2+k(a ≠0)变为y=a(x-h+m)2+k
二次函数y=ax2+bx+c(a≠0)变为y=a(x+m)2+b(x+m)+c
向右平移m个单位:
二次函数y=a(x-h)2+k(a ≠0)变为y=a(x-h-m)2+k
二次函数y=ax2+bx+c(a≠0) 变为y=a(x-m)2+b(x-m)+c
2.图像对称
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
3.图像旋转
绕原点旋转180°顶点纵横坐标与a全部符号变相反
绕顶点旋转180°顶点坐标符号不变,a符号变相反
例6.如图,抛物线y=与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且对称轴为,点D为顶点,连结BD,CD,抛物线的对称轴与x轴交于点E.
(1)求抛物线的解析式及点D的坐标;
(2)若对称轴右侧抛物线上一点M,过点M作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标;
(3)连接BC交DE于点P,点Q是线段BD上的一个动点,自点D以个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为,设Q点的运动时间为()秒,求使得△PQ与△PQB重叠部分的面积为△DPQ面积的时对应的值.
备用图
2、已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;
(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.
3、如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.
(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.
4.如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y=x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.
(1)求点C的坐标及二次函数的关系式;
(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;
(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.
(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)
5.如图①,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数解析式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图②,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点是P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形,若能,求出m的值;若不能,请说明理由.
6、将抛物线沿c1:沿x轴翻折,得拋物线c2,如图所示.
(1)请直接写出拋物线c2的表达式.
(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.
①当B,D是线段AE的三等分点时,求m的值;
②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
7.如图14,抛物线y=x2+bx+c顶点为M,对称轴是直线x=1,与x轴的交点为A(-3,0)和B.将抛物线y=x2+bx+c绕点B逆时针方向旋转90°,点M1,A1为点M,A旋转后的对应点,旋转后的抛物线与y轴相交于C,D两点.
(1)写出点B的坐标及求抛物线y=x2+bx+c的解析式;(4分)
(2)求证A,M,A1三点在同一直线上;(4分)
(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD的面积最大.
如果存在,请求出点P的坐标及四边形PM1MD的面积;如果不存在,请说明理由.(4分)
数学九年级下册5.2 二次函数的图象和性质学案设计: 这是一份数学九年级下册5.2 二次函数的图象和性质学案设计
苏科版5.5 用二次函数解决问题学案及答案: 这是一份苏科版5.5 用二次函数解决问题学案及答案,共12页。学案主要包含了课堂导入,知识梳理,典例精讲,巩固练习,课堂总结等内容,欢迎下载使用。
初中苏科版5.3 用待定系数法确定二次函数的表达式导学案: 这是一份初中苏科版5.3 用待定系数法确定二次函数的表达式导学案,共9页。学案主要包含了知识梳理,探索归纳等内容,欢迎下载使用。