年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省盐城市联谊校中考考前最后一卷数学试卷含解析

    2022届江苏省盐城市联谊校中考考前最后一卷数学试卷含解析第1页
    2022届江苏省盐城市联谊校中考考前最后一卷数学试卷含解析第2页
    2022届江苏省盐城市联谊校中考考前最后一卷数学试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省盐城市联谊校中考考前最后一卷数学试卷含解析

    展开

    这是一份2022届江苏省盐城市联谊校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了九年级等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.不等式组的解集是(  )
    A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
    2.在中,,,下列结论中,正确的是( )
    A. B.
    C. D.
    3.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为(  )

    A.8 B.8 C.4 D.6
    4.下列运算结果是无理数的是(  )
    A.3× B. C. D.
    5.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是(  )
    A. B.
    C. D.
    6.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )

    A.3 B.4 C. D.5
    7.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
    A.5 B.6 C.7 D.9
    8.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是( )

    A.③④ B.②③ C.①④ D.①②③
    9.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
    A.
    B.
    C.
    D.
    10.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.
    12.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米

    13.函数中自变量x的取值范围是___________.
    14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.

    15.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为_________.

    16.已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_____.(只需写出一个)
    三、解答题(共8题,共72分)
    17.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

    18.(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
    员工
    管理人员
    普通工作人员
    人员结构
    总经理
    部门经理
    科研人员
    销售人员
    高级技工
    中级技工
    勤杂工
    员工数(名)
    1
    3
    2
    3

    24
    1
    每人月工资(元)
    21000
    8400
    2025
    2200
    1800
    1600
    950
    请你根据上述内容,解答下列问题:该公司“高级技工”有   名;所有员工月工资的平均数x为2500元,中位数为   元,众数为   元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.

    19.(8分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.
    (1)求证:;
    (2)若,求tan∠CED的值.

    20.(8分)(1)解不等式组:;
    (2)解方程:.
    21.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为   ,图①中m的值为   ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

    22.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.

    (1)求证:△AEF≌△DEB;
    (2)证明四边形ADCF是菱形;
    (3)若AC=4,AB=5,求菱形ADCFD 的面积.
    23.(12分)已知:如图.D是的边上一点,,交于点M,.
    (1)求证:;
    (2)若,试判断四边形的形状,并说明理由.

    24.计算:(-1)-1-++|1-3|



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
    2、C
    【解析】
    直接利用锐角三角函数关系分别计算得出答案.
    【详解】
    ∵,,
    ∴,
    ∴,
    故选项A,B错误,
    ∵,
    ∴,
    故选项C正确;选项D错误.
    故选C.

    【点睛】
    此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.
    3、D
    【解析】
    分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
    详解: 如图,连接OB,

    ∵BE=BF,OE=OF,
    ∴BO⊥EF,
    ∴在Rt△BEO中,∠BEF+∠ABO=90°,
    由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
    ∴∠BAC=∠ABO,
    又∵∠BEF=2∠BAC,
    即2∠BAC+∠BAC=90°,
    解得∠BAC=30°,
    ∴∠FCA=30°,
    ∴∠FBC=30°,
    ∵FC=2,
    ∴BC=2,
    ∴AC=2BC=4,
    ∴AB===6,
    故选D.
    点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
    4、B
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    A选项:原式=3×2=6,故A不是无理数;
    B选项:原式=,故B是无理数;
    C选项:原式==6,故C不是无理数;
    D选项:原式==12,故D不是无理数
    故选B.
    【点睛】
    考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    5、D
    【解析】
    将,代入,得,,然后分析与的正负,即可得到的大致图象.
    【详解】
    将,代入,得,,
    即,.
    ∴.
    ∵,∴,∴.
    即与异号.
    ∴.
    又∵,
    故选D.
    【点睛】
    本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
    6、B
    【解析】
    连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
    【详解】
    连接DF,

    ∵四边形ABCD是矩形

    在中,



    故选:B.
    【点睛】
    本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.
    7、B
    【解析】
    直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
    【详解】
    ∵一组数据1,7,x,9,5的平均数是2x,
    ∴,
    解得:,
    则从大到小排列为:3,5,1,7,9,
    故这组数据的中位数为:1.
    故选B.
    【点睛】
    此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
    8、C
    【解析】
    试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    解:①当x=1时,y=a+b+c=1,故本选项错误;
    ②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;
    ③由抛物线的开口向下知a<1,
    ∵对称轴为1>x=﹣>1,
    ∴2a+b<1,
    故本选项正确;
    ④对称轴为x=﹣>1,
    ∴a、b异号,即b>1,
    ∴abc<1,
    故本选项错误;
    ∴正确结论的序号为②③.
    故选B.
    点评:二次函数y=ax2+bx+c系数符号的确定:
    (1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;
    (2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;
    (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;
    (4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
    9、A
    【解析】
    先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
    【详解】
    抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
    故选A.
    10、C
    【解析】
    试题分析:由题意可得,
    第一小组对应的圆心角度数是:×360°=72°,
    故选C.
    考点:1.扇形统计图;2.条形统计图.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.
    【详解】
    解:∵直角三角形的两条直角边的长分别为5,12,
    ∴斜边为=13,
    ∵三角形的面积=×5×12=×13h(h为斜边上的高),
    ∴h=.
    故答案为:.
    【点睛】
    考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.
    12、
    【解析】
    由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就
    是直线y=8与抛物线两交点的横坐标差的绝对值.
    故有,
    即,,.
    所以两盏警示灯之间的水平距离为:
    13、x≤2
    【解析】
    试题解析:根据题意得:
    解得:.
    14、(-2,-2)
    【解析】
    先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
    【详解】
    “卒”的坐标为(﹣2,﹣2),

    故答案是:(﹣2,﹣2).
    【点睛】
    考查了坐标确定位置,关键是正确确定原点位置.
    15、
    【解析】
    DE∥BC


    16、y=x2等
    【解析】
    分析:根据二次函数的图象开口向上知道a>1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a>1,c=1即可.
    详解:∵二次函数的图象开口向上,∴a>1.∵二次函数的图象过原点,∴c=1.
    故解析式满足a>1,c=1即可,如y=x2.
    故答案为y=x2(答案不唯一).
    点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
    【解析】
    试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.
    试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),
    ∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
    考点:(1)正方形;(2)全等三角形的判定与性质.
    18、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
    【解析】
    (1)用总人数50减去其它部门的人数;
    (2)根据中位数和众数的定义求解即可;
    (3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
    (4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
    【详解】
    (1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
    (2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
    在这些数中1600元出现的次数最多,因而众数是1600元;
    (3)这个经理的介绍不能反映该公司员工的月工资实际水平.
    用1700元或1600元来介绍更合理些.
    (4)(元).
    能反映该公司员工的月工资实际水平.
    19、(1)见解析;(2)tan∠CED=
    【解析】
    (1)欲证明,只要证明即可;
    (2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.
    【详解】
    (1)证明:如下图,连接AE,
    ∵AD是直径,
    ∴,
    ∴DC⊥AB,
    ∵AC=CB,
    ∴DA=DB,
    ∴∠CDA=∠CDB,
    ∵,,
    ∴∠BDC=∠EAC,
    ∵∠AEC=∠ADC,
    ∴∠EAC=∠AEC,
    ∴;
    (2)解:如下图,连接OC,
    ∵AO=OD,AC=CB,
    ∴OC∥BD,
    ∴,
    ∴,
    设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,
    ∵∠BAD=∠BEC,∠B=∠B,
    ∴,
    ∴BD•BE=BC•BA,设AC=BC=x,
    则有,
    ∴,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.
    20、(1)﹣2≤x<2;(2)x=.
    【解析】
    (1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;
    (2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.
    【详解】
    (1),
    ∵解不等式①得:x<2,
    解不等式②得:x≥﹣2,
    ∴不等式组的解集为﹣2≤x<2;
    (2)方程两边都乘以(2x﹣1)(x﹣2)得
    2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),
    解得:x=,
    检验:把x=代入(2x﹣1)(x﹣2)≠0,
    所以x=是原方程的解,
    即原方程的解是x=.
    【点睛】
    本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.
    21、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
    【解析】
    (Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
    【详解】
    解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
    ∵×100=31%,
    ∴图①中m的值为31.
    故答案为50、31;
    (Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
    ∴这组数据的众数为4;
    ∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
    ∴这组数据的中位数是3;
    由条形统计图可得=3.1,
    ∴这组数据的平均数是3.1.
    (Ⅲ)1500×18%=410(人).
    答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    22、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,

    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    23、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.
    【解析】
    (1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN是平行四边形即可;
    (2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.
    【详解】
    证明:(1)∵CN∥AB,
    ∴∠DAM=∠NCM,
    ∵在△AMD和△CMN中,
    ∠DAM=∠NCM
    MA=MC
    ∠DMA=∠NMC,
    ∴△AMD≌△CMN(ASA),
    ∴AD=CN,
    又∵AD∥CN,
    ∴四边形ADCN是平行四边形,
    ∴CD=AN;
    (2)解:四边形ADCN是矩形,
    理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
    ∴∠MCD=∠MDC,
    ∴MD=MC,
    由(1)知四边形ADCN是平行四边形,
    ∴MD=MN=MA=MC,
    ∴AC=DN,
    ∴四边形ADCN是矩形.
    【点睛】
    本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.
    24、-1
    【解析】
    试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.
    试题解析:原式=-1-=-1.

    相关试卷

    江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析:

    这是一份江苏省苏州区六校联考2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列二次根式,最简二次根式是,下列各数中,无理数是等内容,欢迎下载使用。

    2022年江苏省盐城市大丰区沈灶中学中考数学考前最后一卷含解析:

    这是一份2022年江苏省盐城市大丰区沈灶中学中考数学考前最后一卷含解析,共21页。试卷主要包含了的整数部分是,二次函数y=ax1+bx+c,方程的解为等内容,欢迎下载使用。

    2022届江苏省扬州市江都区五校联谊重点中学中考考前最后一卷数学试卷含解析:

    这是一份2022届江苏省扬州市江都区五校联谊重点中学中考考前最后一卷数学试卷含解析,共20页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map