2022届山东省郓城县中考猜题数学试卷含解析
展开
这是一份2022届山东省郓城县中考猜题数学试卷含解析,共17页。试卷主要包含了计算,已知等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个数表示在数轴上,它们对应的点中,离原点最远的是( )A.﹣2 B.﹣1 C.0 D.12.如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是( )A.k>0 B.k≥0 C.k>4 D.k≥43.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B.C. D.4.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )A. B. C. D.5.计算(﹣3)﹣(﹣6)的结果等于( )A.3 B.﹣3 C.9 D.186.下列生态环保标志中,是中心对称图形的是( )A. B. C. D.7.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( )A. B. C. D.8.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于( )A.13 B.14 C.15 D.169.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃10.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )A.1 B. C.-1 D.+111.下列四个命题中,真命题是( )A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和12.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.14.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.15.不等式组的所有整数解的积为__________.16.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.17.计算(﹣a2b)3=__.18.的相反数是_____,倒数是_____,绝对值是_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.(1)求证:AE=CE;(2)若tanD=3,求AB的长.20.(6分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?21.(6分)观察下列各式:①②③由此归纳出一般规律__________.22.(8分)解不等式组,并写出该不等式组的最大整数解.23.(8分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A301200.20B603200.25设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?24.(10分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.25.(10分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.(1)求直线的表达式;(2)若直线与矩形有公共点,求的取值范围;(3)直线与矩形没有公共点,直接写出的取值范围.26.(12分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.27.(12分)观察下列各个等式的规律:第一个等式:=1,第二个等式: =2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
参考答案 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.2、D【解析】
由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【详解】∵关于x的方程x2-x+1=0有实数根,∴,解得:k≥1.故选D.【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.3、A【解析】
画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.4、D【解析】
由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,
由5头牛、2只羊,值金10两可得:5x+2y=10,
由2头牛、5只羊,值金8两可得2x+5y=8,
则7头牛、7只羊,值金18两,据此可知7x+7y=18,
所以方程组错误,
故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.5、A【解析】原式=−3+6=3,故选A6、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.7、A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.8、D【解析】
由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.9、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃. 故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.10、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.11、B【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.12、B【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1 【解析】原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,即x2−2x+1=−+1,所以(x−1)2= .故答案为:1,.14、y=160﹣80x(0≤x≤2)【解析】
根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.【详解】解:∵汽车的速度是平均每小时80千米,∴它行驶x小时走过的路程是80x,∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).【点睛】本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.15、1【解析】
解:,解不等式①得:,解不等式②得:,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.16、(15﹣5)【解析】
先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.【详解】∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.17、−a6b3【解析】
根据积的乘方和幂的乘方法则计算即可.【详解】原式=(﹣a2b)3=−a6b3,故答案为−a6b3.【点睛】本题考查了积的乘方和幂的乘方,关键是掌握运算法则.18、 , 【解析】∵只有符号不同的两个数是互为相反数,∴的相反数是;∵乘积为1的两个数互为倒数,∴的倒数是;∵负数得绝对值是它的相反数,∴绝对值是故答案为(1). (2). (3). 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)AB=4【解析】
(1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.【详解】(1)证明:过点B作BH⊥CE于H,如图1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90°,∴四边形ABHE是矩形,∴AE=BH.∴AE=CE.(2)∵四边形ABHE是矩形,∴AB=HE.∵在Rt△CED中,,设DE=x,CE=3x,∴.∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.20、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.21、xn+1-1【解析】试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.试题解析:(x﹣1)(++…x+1)=.故答案为.考点:平方差公式.22、﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:,解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,23、(1)x=270或x=520;(2)当320<x<520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x>520时选择方式A更省钱.【解析】
(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.
(2)列不等式,求解即可得出结论.【详解】(1)当时,与x之间的函数关系式为: 当时,与x之间的函数关系式为: 即当时,与x之间的函数关系式为: 当时, 与x之间的函数关系式为: 即方式A和方式B的收费金额相等,当时,当时, 解得: 当时, 解得: 即x=270或x=520时,方式A和方式B的收费金额相等. (2) 若上网时间x超过320分钟,解得320<x<520,当320<x<520时,选择方式B更省钱;解得x=520,当x=520时,两种方式花钱一样多;解得x>520,当x>520时选择方式A更省钱.【点睛】考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.24、证明见解析.【解析】
由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.【详解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.25、(1);(2);(3)【解析】
(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.【详解】解:(1) ,设直线表达式为,,解得直线表达式为;(2) 直线可以看到是由直线平移得到,当直线过时,直线与矩形有一个公共点,如图1, 当过点时,代入可得,解得.当过点时,可得直线与矩形有公共点时,的取值范围为;(3) ,直线过,且,如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,当过点时,代入可得,解得直线:与矩形没有公共点时的取值范围为【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.26、 (8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.27、(1)=4;(2)=n.【解析】
试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;(2)第n个等式是:=n.证明如下:∵= = =n∴第n个等式是:=n.点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.
相关试卷
这是一份山东省烟台市2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,有下列四个命题等内容,欢迎下载使用。
这是一份2022年山东省淄博市桓台区中考猜题数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式中,最简二次根式是,下列命题中,真命题是,下列判断正确的是,计算等内容,欢迎下载使用。
这是一份2022年山东省青岛市市北区中考猜题数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,不等式组的解集是等内容,欢迎下载使用。