搜索
    上传资料 赚现金
    英语朗读宝

    2022届山东省郓城县中考数学四模试卷含解析

    2022届山东省郓城县中考数学四模试卷含解析第1页
    2022届山东省郓城县中考数学四模试卷含解析第2页
    2022届山东省郓城县中考数学四模试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省郓城县中考数学四模试卷含解析

    展开

    这是一份2022届山东省郓城县中考数学四模试卷含解析,共22页。试卷主要包含了下列运算正确的是,点M等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为(  )
    A. B. C. D.
    2.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为(  )

    A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
    3.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为(  )

    A. B. C.1 D.
    4.如图,直线被直线所截,,下列条件中能判定的是( )

    A. B. C. D.
    5.下列运算正确的是( )
    A. B.
    C. D.
    6.如果向北走6km记作+6km,那么向南走8km记作(  )
    A.+8km B.﹣8km C.+14km D.﹣2km
    7.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为(  )

    A.28 B.26 C.25 D.22
    8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )
    A.t< B.t> C.t≤ D.t≥
    9.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

    A. B. C. D.
    10.点M(1,2)关于y轴对称点的坐标为(  )
    A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.

    12.因式分解:_________________.
    13.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.
    14.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.

    15.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.

    16.若正六边形的内切圆半径为2,则其外接圆半径为__________.
    三、解答题(共8题,共72分)
    17.(8分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:
    (1)本次共抽查了八年级学生多少人;
    (2)请直接将条形统计图补充完整;
    (3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;
    (4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?

    18.(8分) 如图,在平面直角坐标系中,直线y1=2x+b与坐标轴交于A、B两点,与双曲线 (x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,点B的坐标为(0,﹣2).
    (1)求直线y1=2x+b及双曲线(x>0)的表达式;
    (2)当x>0时,直接写出不等式的解集;
    (3)直线x=3交直线y1=2x+b于点E,交双曲线(x>0)于点F,求△CEF的面积.

    19.(8分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
    20.(8分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=,求⊙O的半径.

    21.(8分)如图,在直角三角形ABC中,
    (1)过点A作AB的垂线与∠B的平分线相交于点D
    (要求:尺规作图,保留作图痕迹,不写作法);
    (2)若∠A=30°,AB=2,则△ABD的面积为   .

    22.(10分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
    23.(12分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)

    24.已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.
    【详解】
    ①若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.
    【点睛】
    掌握分类讨论的方法是本题解题的关键.
    2、A
    【解析】
    直接利用圆周角定理结合三角形的外角的性质即可得.
    【详解】
    连接BE,如图所示:

    ∵∠ACB=∠AEB,
    ∠AEB>∠D,
    ∴∠C>∠D.
    故选:A.
    【点睛】
    考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
    3、B
    【解析】
    由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形,
    ∴AB=DE,
    ∴AB=DE=CD,即D为CE中点,
    ∵EF⊥BC,
    ∴∠EFC=90°,
    ∵AB∥CD,
    ∴∠ECF=∠ABC,
    ∴tan∠ECF=tan∠ABC=,
    在Rt△CFE中,EF=,tan∠ECF===,
    ∴CF=,
    根据勾股定理得,CE==,
    ∴AB=CE=,
    故选B.
    【点睛】
    本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
    4、C
    【解析】
    试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
    B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
    C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;
    D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
    故选C.

    5、D
    【解析】
    【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
    【详解】A. ,故A选项错误,不符合题意;
    B. ,故B选项错误,不符合题意;
    C. ,故C选项错误,不符合题意;
    D. ,正确,符合题意,
    故选D.
    【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
    6、B
    【解析】
    正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
    【详解】
    解:向北和向南互为相反意义的量.
    若向北走6km记作+6km,
    那么向南走8km记作﹣8km.
    故选:B.
    【点睛】
    本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
    7、A
    【解析】
    如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.
    【详解】
    如图,

    由题意得:BM=MN(设为λ),CN=DN=3;
    ∵四边形ABCD为矩形,
    ∴BC=AD=9,∠C=90°,MC=9-λ;
    由勾股定理得:λ2=(9-λ)2+32,
    解得:λ=5,
    ∴五边形ABMND的周长=6+5+5+3+9=28,
    故选A.
    【点睛】
    该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.
    8、B
    【解析】
    将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.
    【详解】
    由题意可得:﹣x+2=,
    所以x2﹣2x+1﹣6t=0,
    ∵两函数图象有两个交点,且两交点横坐标的积为负数,

    解不等式组,得t>.
    故选:B.
    点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.
    9、A
    【解析】
    解:∵AE平分∠BAD,
    ∴∠DAE=∠BAE;
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠BEA=∠DAE=∠BAE,
    ∴AB=BE=6,
    ∵BG⊥AE,垂足为G,
    ∴AE=2AG.
    在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
    ∴AG==2,
    ∴AE=2AG=4;
    ∴S△ABE=AE•BG=.
    ∵BE=6,BC=AD=9,
    ∴CE=BC﹣BE=9﹣6=3,
    ∴BE:CE=6:3=2:1,
    ∵AB∥FC,
    ∴△ABE∽△FCE,
    ∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
    故选A.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
    10、A
    【解析】
    关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.
    【详解】
    点M(1,2)关于y轴对称点的坐标为(-1,2)
    【点睛】
    本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣2
    【解析】
    连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.
    【详解】
    连结AE,如图1,

    ∵∠BAC=90°,AB=AC,BC=,
    ∴AB=AC=4,
    ∵AD为直径,
    ∴∠AED=90°,
    ∴∠AEB=90°,
    ∴点E在以AB为直径的O上,
    ∵O的半径为2,
    ∴当点O、E. C共线时,CE最小,如图2

    在Rt△AOC中,∵OA=2,AC=4,
    ∴OC=,
    ∴CE=OC−OE=2﹣2,
    即线段CE长度的最小值为2﹣2.
    故答案为:2﹣2.
    【点睛】
    此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.
    12、
    【解析】
    提公因式法和应用公式法因式分解.
    【详解】
    解: .
    故答案为:
    【点睛】
    本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
    13、1
    【解析】
    估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.
    【详解】
    因为共摸了200次球,发现有60次摸到黑球,
    所以估计摸到黑球的概率为0.3,
    所以估计这个口袋中黑球的数量为20×0.3=6(个),
    则红球大约有20-6=1个,
    故答案为:1.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    14、
    【解析】
    解:设E(x,x),
    ∴B(2,x+2),
    ∵反比例函数 (k≠0,x>0)的图象过点B. E.
    ∴x2=2(x+2),
    ,(舍去),

    故答案为
    15、2
    【解析】
    解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,

    ∵AB=AC,点E为BD的中点,且AD=AB,
    ∴设BE=DE=x,则AD=AF=1x.
    ∵DG⊥AC,EF⊥AC,
    ∴DG∥EF,∴,即,解得.
    ∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.
    又∵DF∥BC,∴∠DFG=∠C,
    ∴Rt△DFG∽Rt△ACH,∴,即,解得.
    在Rt△ABH中,由勾股定理,得.
    ∴.
    又∵△ADF∽△ABC,∴,

    ∴.
    故答案为:2.
    16、
    【解析】
    根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
    【详解】

    解:如图,连接、,作于;
    则,
    ∵六边形正六边形,
    ∴是等边三角形,
    ∴,
    ∴,
    ∴正六边形的内切圆半径为2,则其外接圆半径为.
    故答案为.
    【点睛】
    本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.

    三、解答题(共8题,共72分)
    17、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
    【解析】
    (1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;
    (2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;
    (3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;
    (4)利用总人数12000乘以对应的比例即可.
    【详解】
    (1)本次共抽查了八年级学生是:30÷20%=150人;
    故答案为150;
    (2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=1.

    (3)人均阅读时间在1~1.5小时对应的圆心角度数是:
    故答案为108;
    (4) (人),
    答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    18、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2= (x>0);(2)0<x<2;
    (3)
    【解析】
    (1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA=AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2= ,可得k=4,则双曲线的表达式为y2= (x>0).
    (2)由x的取值范围,结合图像可求得答案.
    (3)把x=3代入y2函数,可得y= ;把x=3代入y1函数,可得y=4,从而得到EF,由三角形的面积公式可得S△CEF=.
    【详解】
    解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得
    ﹣2=b,
    ∴直线解析式为y1=2x﹣2,
    令y=0,则x=1,
    ∴A(1,0),
    ∵OA=AD,
    ∴D(2,0),
    把x=2代入y1=2x﹣2,可得
    y=2,
    ∴点C的坐标为(2,2),
    把(2,2)代入双曲线y2= ,可得k=2×2=4,
    ∴双曲线的表达式为y2= (x>0);
    (2)当x>0时,不等式>2x+b的解集为0<x<2;
    (3)把x=3代入y2=,可得y= ;把x=3代入y1=2x﹣2,可得y=4,
    ∴EF=4﹣=,
    ∴S△CEF=××(3﹣2)=,
    ∴△CEF的面积为.
    【点睛】
    本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.
    19、 (1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.
    【解析】
    (1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;
    (2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;
    (3)利用二次函数的性质求出w的最大值,以及此时x的值即可.
    【详解】
    (1)设y=kx+b(k≠0),
    根据题意得,
    解得:k=﹣2,b=220,
    ∴y=﹣2x+220(40≤x≤70);
    (2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;
    (3)w=﹣2(x﹣75)2+21,
    ∵40≤x≤70,
    ∴x=70时,w有最大值为w=﹣2×25+21=2050元,
    ∴当销售单价为70元时,该公司日获利最大,为2050元.
    【点睛】
    此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.
    20、(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.
    【解析】
    (1)相切,连接OC,∵C为的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;
    (2)连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴=AD•DE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==2.
    ∴半径为1.1

    21、(1)见解析(2)
    【解析】
    (1)分别作∠ABC的平分线和过点A作AB的垂线,它们的交点为D点;
    (2)利用角平分线定义得到∠ABD=30°,利用含30度的直角三角形三边的关系得到AD=AB=,然后利用三角形面积公式求解.
    【详解】
    解:(1)如图,点D为所作;

    (2)∵∠CAB=30°,∴∠ABC=60°.
    ∵BD为角平分线,∴∠ABD=30°.
    ∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面积=×2×=.
    故答案为.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形面积公式.
    22、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.
    【解析】
    【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.
    【详解】(1)设A种奖品每件x元,B种奖品每件y元,
    根据题意得:,
    解得:,
    答:A种奖品每件16元,B种奖品每件4元;
    (2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,
    根据题意得:16a+4(100﹣a)≤900,
    解得:a≤,
    ∵a为整数,
    ∴a≤41,
    答:A种奖品最多购买41件.
    【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.
    23、小时
    【解析】
    过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
    【详解】
    解:如图,过点C作CD⊥AB交AB延长线于D.
    在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
    ∴CD=AC=40海里.
    在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
    ∴BC=≈=50(海里),
    ∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).

    考点:解直角三角形的应用-方向角问题
    24、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.

    相关试卷

    2024年山东省菏泽市郓城县中考数学一模试卷(含解析):

    这是一份2024年山东省菏泽市郓城县中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省菏泽市郓城县中考数学三模试卷(含解析):

    这是一份2023年山东省菏泽市郓城县中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年山东省菏泽市郓城县中考数学二模试卷(含解析):

    这是一份2023年山东省菏泽市郓城县中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题,羊二,直金十九两;牛二等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map