开学活动
搜索
    上传资料 赚现金

    2022届三门峡实验中学中考四模数学试题含解析

    2022届三门峡实验中学中考四模数学试题含解析第1页
    2022届三门峡实验中学中考四模数学试题含解析第2页
    2022届三门峡实验中学中考四模数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届三门峡实验中学中考四模数学试题含解析

    展开

    这是一份2022届三门峡实验中学中考四模数学试题含解析,共22页。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    2.若分式有意义,则的取值范围是( )
    A.; B.; C.; D..
    3.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是(  )

    A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
    4.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
    A.3 B.4 C.5 D.6
    5.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为(  )
    A.180元 B.200元 C.225元 D.259.2元
    6.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于(  )

    A.40° B.70° C.60° D.50°
    7.如果向北走6km记作+6km,那么向南走8km记作(  )
    A.+8km B.﹣8km C.+14km D.﹣2km
    8.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )

    A.30 B.40 C.60 D.80
    9.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
    A.k>1 B.k>0 C.k≥1 D.k<1
    10.△ABC在正方形网格中的位置如图所示,则cosB的值为( )

    A. B. C. D.2
    11.下列说法正确的是(  )
    A.某工厂质检员检测某批灯泡的使用寿命采用普查法
    B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
    C.12名同学中有两人的出生月份相同是必然事件
    D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
    12.下列命题正确的是(  )
    A.对角线相等的四边形是平行四边形
    B.对角线相等的四边形是矩形
    C.对角线互相垂直的平行四边形是菱形
    D.对角线互相垂直且相等的四边形是正方形
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.函数的自变量的取值范围是.
    14.如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若∠ACB=90°,则点C的坐标为______.

    15.已知x1,x2是方程x2-3x-1=0的两根,则=______.
    16.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.

    17.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.
    18.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
    (1)分别求这两个函数的表达式;
    (2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.

    20.(6分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:
    (1)在这次研究中,一共调查了   学生,并请补全折线统计图;
    (2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?

    21.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:

    (1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
    (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
    22.(8分)计算下列各题:
    (1)tan45°−sin60°•cos30°;
    (2)sin230°+sin45°•tan30°.
    23.(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
    “读书节“活动计划书
    书本类别
    科普类
    文学类
    进价(单位:元)
    18
    12
    备注
    (1)用不超过16800元购进两类图书共1000本;
    (2)科普类图书不少于600本;

    (1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;
    (2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
    24.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    25.(10分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时?

    26.(12分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.
    (1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;
    (2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.
    27.(12分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
    (1)本次抽样调查共抽取了多少名学生?
    (2)求测试结果为C等级的学生数,并补全条形图;
    (3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
    (4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    2、B
    【解析】
    分式的分母不为零,即x-2≠1.
    【详解】
    ∵分式有意义,
    ∴x-2≠1,
    ∴.
    故选:B.
    【点睛】
    考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
    3、C
    【解析】
    【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
    【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
    ∴不等式y1>y2的解集是﹣3<x<0或x>2,
    故选C.
    【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
    4、C
    【解析】
    解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
    其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
    和为2的只有1+1;
    和为3的有1+2;2+1;
    和为1的有1+3;2+2;3+1;
    和为5的有1+1;2+3;3+2;1+1;
    和为6的有2+1;1+2;
    和为7的有3+1;1+3;
    和为8的有1+1.
    故p(5)最大,故选C.
    5、A
    【解析】
    设这种商品每件进价为x元,根据题中的等量关系列方程求解.
    【详解】
    设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.
    【点睛】
    本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
    6、D
    【解析】
    根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.
    【详解】
    ∵DE垂直平分AC交AB于E,
    ∴AE=CE,
    ∴∠A=∠ACE,
    ∵∠A=30°,
    ∴∠ACE=30°,
    ∵∠ACB=80°,
    ∴∠BCE=∠ACB-∠ACE=50°,
    故选D.
    【点睛】
    本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    7、B
    【解析】
    正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
    【详解】
    解:向北和向南互为相反意义的量.
    若向北走6km记作+6km,
    那么向南走8km记作﹣8km.
    故选:B.
    【点睛】
    本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
    8、B
    【解析】
    过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
    【详解】
    过点A作AM⊥x轴于点M,如图所示.

    设OA=a,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a,a).
    ∵点A在反比例函数y=的图象上,
    ∴a•a=a2=48,
    解得:a=1,或a=-1(舍去).
    ∴AM=8,OM=6,OB=OA=1.
    ∵四边形OACB是菱形,点F在边BC上,
    ∴S△AOF=S菱形OBCA=OB•AM=2.
    故选B.
    【点睛】
    本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    9、A
    【解析】
    根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
    【详解】
    解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
    即可得k﹣1>0,
    解得k>1.
    故选A.
    【点评】
    本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    10、A
    【解析】
    解:在直角△ABD中,BD=2,AD=4,则AB=,
    则cosB=.
    故选A.

    11、B
    【解析】
    分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
    【详解】
    A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
    B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
    C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
    D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
    故答案选B.
    【点睛】
    本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
    12、C
    【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
    详解:对角线互相平分的四边形是平行四边形,A错误;
    对角线相等的平行四边形是矩形,B错误;
    对角线互相垂直的平行四边形是菱形,C正确;
    对角线互相垂直且相等的平行四边形是正方形;
    故选:C.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x≠1
    【解析】
    该题考查分式方程的有关概念
    根据分式的分母不为0可得
    X-1≠0,即x≠1
    那么函数y=的自变量的取值范围是x≠1
    14、(2,0)
    【解析】
    根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据Rt△ABC中,OC=AB=2,即可得到点C的坐标
    【详解】
    如图所示,

    ∵直线y=x与双曲线y=交于A,B两点,OA=2,
    ∴AB=2AO=4,
    又∵∠ACB=90°,
    ∴Rt△ABC中,OC=AB=2,
    又∵点C在x轴的正半轴上,
    ∴C(2,0),
    故答案为(2,0).
    【点睛】
    本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长.
    15、﹣1.
    【解析】
    试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
    16、
    【解析】
    过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
    【详解】
    如图,过点D作DF⊥BC于点F,

    ∵四边形ABCD是菱形,
    ∴BC=CD,AD∥BC,
    ∵∠DEB=90°,AD∥BC,
    ∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
    ∴四边形DEBF是矩形,
    ∴DF=BE,DE=BF,
    ∵点C的横坐标为5,BE=3DE,
    ∴BC=CD=5,DF=3DE,CF=5﹣DE,
    ∵CD2=DF2+CF2,
    ∴25=9DE2+(5﹣DE)2,
    ∴DE=1,
    ∴DF=BE=3,
    设点C(5,m),点D(1,m+3),
    ∵反比例函数y=图象过点C,D,
    ∴5m=1×(m+3),
    ∴m=,
    ∴点C(5,),
    ∴k=5×=,
    故答案为:
    【点睛】
    本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
    17、一
    【解析】
    ∵一元二次方程x2-2x-m=0无实数根,
    ∴△=4+4m<0,解得m<-1,
    ∴m+1<0,m-1<0,
    ∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.
    故答案是:一.
    18、-1≤a≤
    【解析】
    根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
    【详解】
    解:反比例函数经过点A和点C.
    当反比例函数经过点A时,即=3,
    解得:a=±(负根舍去);
    当反比例函数经过点C时,即=3,
    解得:a=1±(负根舍去),
    则-1≤a≤.
    故答案为: -1≤a≤.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)反比例函数表达式为,正比例函数表达式为;
    (2),.
    【解析】
    试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.
    试题解析:()把代入反比例函数表达式,
    得,解得,
    ∴反比例函数表达式为,
    把代入正比例函数,
    得,解得,
    ∴正比例函数表达式为.
    ()直线由直线向上平移个单位所得,
    ∴直线的表达式为,
    由,解得或,
    ∵在第四象限,
    ∴,
    连接,
    ∵,




    20、(1)200名;折线图见解析;(2)1210人.
    【解析】
    (1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;
    (2)利用样本估计总体的方法计算即可解答.
    【详解】
    (1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).
    补全折线统计图如下:

    (2)2200×=1210(人).
    答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.
    【点睛】
    本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.
    21、(1)30;;(2).
    【解析】
    试题分析:(1)根据题意列式求值,根据相应数据画图即可;
    (2)根据题意列表,然后根据表中数据求出概率即可.
    解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
    答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
    故答案为30,144°;
    补全统计图如图所示:
    (2)根据题意列表如下:
    设竖列为小红抽取的跑道,横排为小花抽取的跑道,

    记小红和小花抽在相邻两道这个事件为A,
    ∴.

    考点:列表法与树状图法;扇形统计图;利用频率估计概率.
    22、(1);(2).
    【解析】
    (1)原式=1﹣×=1﹣=;
    (2)原式=×+×=.
    【点睛】
    本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.
    23、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
    【解析】
    (1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
    (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
    【详解】
    解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
    根据题意可得,
    化简得:540-10x=360,
    解得:x=18,
    经检验:x=18是原分式方程的解,且符合题意,
    则A类图书的标价为:1.5x=1.5×18=27(元),
    答:A类图书的标价为27元,B类图书的标价为18元;
    (2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
    由题意得,,
    解得:600≤t≤800,
    则总利润w=(27-a-18)t+(18-12)(1000-t)
    =(9-a)t+6(1000-t)
    =6000+(3-a)t,
    故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
    当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
    当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
    答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
    【点睛】
    本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
    24、(1)a=0.3,b=4;(2)99人;(3)
    【解析】
    分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    详解:(1)a=1-0.15-0.35-0.20=0.3;
    ∵总人数为:3÷0.15=20(人),
    ∴b=20×0.20=4(人);
    故答案为:0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
    ∴所选两人正好都是甲班学生的概率是:.
    点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    25、(1)y1=4x,y2=-5x+1.(2)km.(3)h.
    【解析】
    (1)由图象直接写出函数关系式;
    (2)若相遇,甲乙走的总路程之和等于两地的距离.
    【详解】
    (1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,
    乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.
    (2)由图象可知甲班速度为4km/h,乙班速度为5km/h,
    设甲、乙两班学生出发后,x小时相遇,则
    4x+5x=1,
    解得x=.
    当x=时,y2=−5×+1=,
    ∴相遇时乙班离A地为km.
    (3)甲、乙两班首次相距4千米,
    即两班走的路程之和为6km,
    故4x+5x=6,
    解得x=h.
    ∴甲、乙两班首次相距4千米时所用时间是h.
    26、 (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.
    【解析】
    (1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;
    (2)利用(1)中所求,分别得出两种服装获利即可得出答案.
    【详解】
    解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:

    解得:,
    答:该车间应安排4天加工童装,6天加工成人装;
    (2)∵45×4=180,30×6=180,
    ∴180×80+180×120=180×(80+120)=36000(元),
    答:该车间加工完这批服装后,共可获利36000元.
    【点睛】
    本题考查二元一次方程组的应用.
    27、(1)50;(2)16;(3)56(4)见解析
    【解析】
    (1)用A等级的频数除以它所占的百分比即可得到样本容量;
    (2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
    (4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
    【详解】
    (1)10÷20%=50(名)
    答:本次抽样调查共抽取了50名学生.
    (2)50-10-20-4=16(名)
    答:测试结果为C等级的学生有16名.
    图形统计图补充完整如下图所示:

    (3)700×=56(名)
    答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
    (4)画树状图为:

    共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
    所以抽取的两人恰好都是男生的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.

    相关试卷

    2024年山东省东营实验中学中考数学四模试卷(含解析):

    这是一份2024年山东省东营实验中学中考数学四模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省三门峡实验中学、二中、三中中考数学一模试卷(含解析):

    这是一份2023年河南省三门峡实验中学、二中、三中中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    三门峡实验中学2022年中考猜题数学试卷含解析:

    这是一份三门峡实验中学2022年中考猜题数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,-2的绝对值是,﹣3的绝对值是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map