搜索
    上传资料 赚现金
    英语朗读宝

    2022届山东省庆云县重点中学中考冲刺卷数学试题含解析

    2022届山东省庆云县重点中学中考冲刺卷数学试题含解析第1页
    2022届山东省庆云县重点中学中考冲刺卷数学试题含解析第2页
    2022届山东省庆云县重点中学中考冲刺卷数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省庆云县重点中学中考冲刺卷数学试题含解析

    展开

    这是一份2022届山东省庆云县重点中学中考冲刺卷数学试题含解析,共21页。试卷主要包含了下列函数是二次函数的是,-2的倒数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    2.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )

    A.3月份 B.4月份 C.5月份 D.6月份
    3.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )

    A.1 B.2 C.3 D.4
    4.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是( )

    A.4 B.3 C.2 D.1
    5.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=(  )

    A.50° B.40° C.30° D.20°
    6.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )
    A.3﹣或1+ B.3﹣或3+
    C.3+或1﹣ D.1﹣或1+
    7.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )

    A. B. C. D.
    8.下列函数是二次函数的是( )
    A. B. C. D.
    9.给出下列各数式,① ② ③ ④ 计算结果为负数的有(  )
    A.1个 B.2个 C.3个 D.4个
    10.-2的倒数是( )
    A.-2 B. C. D.2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.

    12.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.

    13.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
    14.在实数范围内分解因式: =_________
    15.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是(  )

    A.1+ B.4+ C.4 D.-1+
    16.若分式的值为正,则实数的取值范围是__________________.
    三、解答题(共8题,共72分)
    17.(8分)解不等式组:,并求出该不等式组所有整数解的和.
    18.(8分)解不等式组 ,并把解集在数轴上表示出来.
    19.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
    (1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
    (2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
    (3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
    20.(8分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
    (1)证明:∠C=∠D;
    (2)若∠BEF=140°,求∠C的度数;
    (3)若EF=2,tanB=3,求CE•CG的值.

    21.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
    (1)求此抛物线的解析式及顶点D的坐标;
    (2)点M是抛物线上的动点,设点M的横坐标为m.
    ①当∠MBA=∠BDE时,求点M的坐标;
    ②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

    22.(10分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.
    求证:AF=CE.

    23.(12分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.
    求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)
    24.先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    首先解出各个不等式的解集,然后求出这些解集的公共部分即可.
    【详解】
    解:由x﹣2≥0,得x≥2,
    由x+1<0,得x<﹣1,
    所以不等式组无解,
    故选B.
    【点睛】
    解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
    2、B
    【解析】
    解:各月每斤利润:3月:7.5-4.5=3元,
    4月:6-2.5=3.5元,
    5月:4.5-2=2.5元,
    6月:3-1.5=1.5元,
    所以,4月利润最大,
    故选B.
    3、B
    【解析】
    根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.
    【详解】
    ∴∠ADC=∠BEC=90°.
    ∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,
    ∠DCA=∠CBE,
    在△ACD和△CBE中,,
    ∴△ACD≌△CBE(AAS),
    ∴CE=AD=3,CD=BE=1,
    DE=CE−CD=3−1=2,
    故答案选:B.
    【点睛】
    本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
    4、C
    【解析】
    用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.
    【详解】
    解:由题意知,△ABC是等腰直角三角形,
    设AB=BC=2,则AC=2,
    ∵点D是AB的中点,
    ∴AD=BD=1,
    在Rt△DBC中,DC=,(勾股定理)
    ∵BG⊥CD,
    ∴∠DEB=∠ABC=90°,
    又∵∠CDB=∠BDE,
    ∴△CDB∽△BDE,
    ∴∠DBE=∠DCB, ,即
    ∴DE= ,BE=,
    在△GAB和△DBC中,
    ∴△GAB≌△DBC(ASA)
    ∴AG=DB=1,BG=CD=,
    ∵∠GAB+∠ABC=180°,
    ∴AG∥BC,
    ∴△AGF∽△CBF,
    ∴,且有AB=BC,故①正确,
    ∵GB=,AC=2,
    ∴AF==,故③正确,
    GF=,FE=BG﹣GF﹣BE=,故②错误,
    S△ABC=AB•AC=2,S△BDF=BF•DE=××=,故④正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.
    5、B
    【解析】
    试题解析:延长ED交BC于F,

    ∵AB∥DE,


    在△CDF中,

    故选B.
    6、C
    【解析】
    ∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
    ∴①若h<1≤x≤3,x=1时,y取得最大值-5,
    可得:-(1-h)2+1=-5,
    解得:h=1-或h=1+(舍);
    ②若1≤x≤3<h,当x=3时,y取得最大值-5,
    可得:-(3-h)2+1=-5,
    解得:h=3+或h=3-(舍).
    综上,h的值为1-或3+,
    故选C.
    点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.
    7、C
    【解析】
    试题解析:∵四边形ABCD是平行四边形,


    故选C.
    8、C
    【解析】
    根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解.
    【详解】
    A. y=x是一次函数,故本选项错误;
    B. y=是反比例函数,故本选项错误;
    C.y=x-2+x2是二次函数,故本选项正确;
    D.y= 右边不是整式,不是二次函数,故本选项错误.
    故答案选C.
    【点睛】
    本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.
    9、B
    【解析】
    ∵①;②;③;④;
    ∴上述各式中计算结果为负数的有2个.
    故选B.
    10、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4
    【解析】
    分析:首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
    详解:设△ABP中AB边上的高是h.
    ∵S△PAB=S矩形ABCD,
    ∴AB•h=AB•AD,
    ∴h=AD=2,
    ∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.

    在Rt△ABE中,∵AB=4,AE=2+2=4,
    ∴BE=,
    即PA+PB的最小值为4.
    故答案为4.
    点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
    12、5200
    【解析】
    设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:

    解得
    所以甲到学校距离为2400米,乙到学校距离为6300米,
    所以甲的家和乙的家相距8700米.
    故答案是:8700.
    【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息.
    13、1.
    【解析】
    直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
    【详解】
    如图所示:
    ∵坡度i=1:0.75,
    ∴AC:BC=1:0.75=4:3,
    ∴设AC=4x,则BC=3x,
    ∴AB==5x,
    ∵AB=20m,
    ∴5x=20,
    解得:x=4,
    故3x=1,
    故这个物体在水平方向上前进了1m.
    故答案为:1.

    【点睛】
    此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
    14、2(x+)(x-).
    【解析】
    先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
    【详解】
    2x2-6=2(x2-3)=2(x+)(x-).
    故答案为2(x+)(x-).
    【点睛】
    本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
    15、A
    【解析】
    根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
    【详解】
    如图,

    ∵点A坐标为(-2,2),
    ∴k=-2×2=-4,
    ∴反比例函数解析式为y=-,
    ∵OB=AB=2,
    ∴△OAB为等腰直角三角形,
    ∴∠AOB=45°,
    ∵PQ⊥OA,
    ∴∠OPQ=45°,
    ∵点B和点B′关于直线l对称,
    ∴PB=PB′,BB′⊥PQ,
    ∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
    ∴B′P⊥y轴,
    ∴点B′的坐标为(- ,t),
    ∵PB=PB′,
    ∴t-2=|-|=,
    整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
    ∴t的值为.
    故选A.
    【点睛】
    本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
    16、x>0
    【解析】
    【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.
    【详解】∵分式的值为正,
    ∴x与x2+2的符号同号,
    ∵x2+2>0,
    ∴x>0,
    故答案为x>0.
    【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.

    三、解答题(共8题,共72分)
    17、1
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:,
    解不等式①得:x≤3,
    解不等式②得:x>﹣2,
    所以不等式组的解集为:﹣2<x≤3,
    所以所有整数解的和为:﹣1+0+1+2+3=1.
    【点睛】
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    18、不等式组的解集为,在数轴上表示见解析.
    【解析】
    先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
    【详解】
    由2(x+2)≤3x+3,可得:x≥1,
    由,可得:x<3,
    则不等式组的解为:1≤x<3,
    不等式组的解集在数轴上表示如图所示:

    【点睛】
    本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    19、(1);(1) ;(3);
    【解析】
    (1)直接根据概率公式求解;
    (1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;
    (3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.
    【详解】
    解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
    (1)画树状图为:

    共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,
    所以一个径赛项目和一个田赛项目的概率P1==;
    (3)两个项目都是径赛项目的结果数为6,
    所以两个项目都是径赛项目的概率P1==.
    故答案为.
    考点:列表法与树状图法.
    20、(1)见解析;(2)70°;(3)1.
    【解析】
    (1)先根据等边对等角得出∠B=∠D,即可得出结论;
    (2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
    (3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
    【详解】
    (1)∵AB=AD,
    ∴∠B=∠D,
    ∵∠B=∠C,
    ∴∠C=∠D;
    (2)∵四边形ABEF是圆内接四边形,
    ∴∠DFE=∠B,
    由(1)知,∠B=∠D,
    ∴∠D=∠DFE,
    ∵∠BEF=140°=∠D+∠DFE=2∠D,
    ∴∠D=70°,
    由(1)知,∠C=∠D,
    ∴∠C=70°;
    (3)如图,由(2)知,∠D=∠DFE,
    ∴EF=DE,
    连接AE,OC,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴BE=DE,
    ∴BE=EF=2,
    在Rt△ABE中,tanB==3,
    ∴AE=3BE=6,根据勾股定理得,AB=,
    ∴OA=OC=AB=,
    ∵点C是 的中点,
    ∴ ,
    ∴∠AOC=90°,
    ∴AC=OA=2,
    ∵,
    ∴∠CAG=∠CEA,
    ∵∠ACG=∠ECA,
    ∴△ACG∽△ECA,
    ∴,
    ∴CE•CG=AC2=1.

    【点睛】
    本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
    21、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
    【详解】
    解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
    得到,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    ∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
    ∴顶点D坐标(1,4);
    (2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

    ∴MG=|﹣m2+2m+3|,BG=3﹣m,
    ∴tan∠MBA=,
    ∵DE⊥x轴,D(1,4),
    ∴∠DEB=90°,DE=4,OE=1,
    ∵B(3,0),
    ∴BE=2,
    ∴tan∠BDE==,
    ∵∠MBA=∠BDE,
    ∴=,
    当点M在x轴上方时, =,
    解得m=﹣或3(舍弃),
    ∴M(﹣,),
    当点M在x轴下方时, =,
    解得m=﹣或m=3(舍弃),
    ∴点M(﹣,﹣),
    综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
    ②如图中,∵MN∥x轴,

    ∴点M、N关于抛物线的对称轴对称,
    ∵四边形MPNQ是正方形,
    ∴点P是抛物线的对称轴与x轴的交点,即OP=1,
    易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
    当﹣m2+2m+3=1﹣m时,解得m=,
    当﹣m2+2m+3=m﹣1时,解得m=,
    ∴满足条件的m的值为或.
    【点睛】
    本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    22、参见解析.
    【解析】
    分析:先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.
    详解:
    证明:平行四边形中,,,

    又,



    点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.
    23、(1) (2)6.03米
    【解析】
    分析:延长ED,AM交于点P,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.
    详解:(1)如图,延长ED,AM交于点P,
    ∵DE∥AB,
    ∴, 即∠MPD=90°
    ∵∠CDE=162°

    (2)如图,在Rt△PCD中, CD=3米,
    ∴PC = 米
    ∵AC=5.5米, EF=0.4米,
    ∴米
    答:摄像头下端点F到地面AB的距离为6.03米.

    点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.
    24、﹣,﹣.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后在-2< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.
    【详解】
    原式====,∵-2< x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.
    【点睛】
    本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.

    相关试卷

    山东省庆云县重点中学2021-2022学年十校联考最后数学试题含解析:

    这是一份山东省庆云县重点中学2021-2022学年十校联考最后数学试题含解析,共25页。试卷主要包含了﹣的绝对值是,若分式有意义,则的取值范围是等内容,欢迎下载使用。

    山东省庆云县2022年中考数学考试模拟冲刺卷含解析:

    这是一份山东省庆云县2022年中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列各数中,为无理数的是,已知∠BAC=45等内容,欢迎下载使用。

    山东省庆云县2021-2022学年中考冲刺卷数学试题含解析:

    这是一份山东省庆云县2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,把一副三角板如图等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map