2022届上海民办日日校中考一模数学试题含解析
展开
这是一份2022届上海民办日日校中考一模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列图形中,不是轴对称图形的是,五名女生的体重等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是( )
A.7 B.8 C.9 D.10
2.已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于( )
A.12πcm2
B.15πcm2
C.24πcm2
D.30πcm2
3.若正六边形的边长为6,则其外接圆半径为( )
A.3 B.3 C.3 D.6
4.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=( )
A. B. C. D.
5.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为( )
A.x>2 B.0<x<4
C.﹣1<x<4 D.x<﹣1 或 x>4
6.下列图形中,不是轴对称图形的是( )
A. B. C. D.
7.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为( )
A.6 B.8 C.10 D.12
8.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
9.下列立体图形中,主视图是三角形的是( )
A. B. C. D.
10.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( )
A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
二、填空题(共7小题,每小题3分,满分21分)
11.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.
12.数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________.
13.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:
①公交车的速度为400米/分钟;
②小刚从家出发5分钟时乘上公交车;
③小刚下公交车后跑向学校的速度是100米/分钟;
④小刚上课迟到了1分钟.
其中正确的序号是_____.
14.分解因式:__________.
15.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.
16.计算(a3)2÷(a2)3的结果等于________
17.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.
三、解答题(共7小题,满分69分)
18.(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
19.(5分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.
20.(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节“活动计划书
书本类别
科普类
文学类
进价(单位:元)
18
12
备注
(1)用不超过16800元购进两类图书共1000本;
(2)科普类图书不少于600本;
…
(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;
(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
21.(10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.
(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.
(3)在(2)的条件下,求线段DE的长度.
22.(10分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
(1)求抛物线的解析式及点D的坐标;
(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.
23.(12分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
请你根据以上数据,计算舍利塔的高度AB.
24.(14分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.
(1)求证:是的切线;
(2)当,时,求的半径.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.
【详解】
设这个多边形的边数为n,依题意得:
180(n-2)=360×3-180,
解之得
n=7.
故选A.
【点睛】
本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.
2、B
【解析】
由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),∴侧面积=π×3×5=15π(cm2),故选B.
3、D
【解析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
【详解】
如图为正六边形的外接圆,ABCDEF是正六边形,
∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
故选D.
【点睛】
本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
4、C
【解析】
根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.
【详解】
∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴CD= =5,
连接CD,如图所示:
∵∠OBD=∠OCD,
∴cos∠OBD=cos∠OCD= .
故选:C.
【点睛】
本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.
5、C
【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.
【详解】
∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
故选C.
【点睛】
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
6、A
【解析】
观察四个选项图形,根据轴对称图形的概念即可得出结论.
【详解】
根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.
故选A.
【点睛】
此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
7、B
【解析】
由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.
【详解】
∵矩形AEHC是由三个全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,
∴∠BQP=∠DMK=∠CHN,
∴△ABQ∽△ADM,△ABQ∽△ACH,
∴,,
∵EF=FG= BD=CD,AC∥EH,
∴四边形BEFD、四边形DFGC是平行四边形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,
又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,
∴,,
即,,
,
∴,即,
解得:,
∴,
故选:B.
【点睛】
本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.
8、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
9、A
【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
【详解】
A、圆锥的主视图是三角形,符合题意;
B、球的主视图是圆,不符合题意;
C、圆柱的主视图是矩形,不符合题意;
D、正方体的主视图是正方形,不符合题意.
故选A.
【点睛】
主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
10、C
【解析】
依据科学记数法的含义即可判断.
【详解】
解:48511111=4.85×117,故本题选择C.
【点睛】
把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
(1)当|a|≥1时,n的值为a的整数位数减1;
(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
二、填空题(共7小题,每小题3分,满分21分)
11、4x=5(x-4)
【解析】
按照面积作为等量关系列方程有4x=5(x﹣4).
12、
【解析】
根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得.
【详解】
解:如图示,
根据题意可得AB=6cm,
设正方体的棱长为xcm,则AC=x,BC=3x,
根据勾股定理,AB2=AC2+BC2,即,
解得
故答案为:.
【点睛】
本题考查了勾股定理的应用,正确理解题意是解题的关键.
13、①②③
【解析】
由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.
【详解】
解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.
故正确的序号是:①②③.
【点睛】
本题考查了一次函数的应用.
14、3(m-1)2
【解析】
试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.
故答案为:3(m-1)2
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
15、140°
【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,
∴EF是△ABD的中位线,
∴EF∥BD,BD=2EF=12,
∴∠ADB=∠AFE=50°,
∵BC=15,CD=9,BD=12,
∴BC2=225,CD2=81,BD2=144,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
故答案为:140°.
16、1
【解析】
根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.
【详解】
解:原式=
【点睛】
本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.
17、1
【解析】
根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.
【详解】
解:设点A的坐标为,
过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,
点,
点B的坐标为,
,
解得,,
故答案为:1.
【点睛】
本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题(共7小题,满分69分)
18、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
19、(1)证明见解析;(2)2.
【解析】
(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;
(2)证明△ODF∽△AEF,列比例式可得结论.
【详解】
(1)证明:连接OD,AD,
∵AB是⊙O的直径,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD∥AC,
∵EF⊥AC,
∴OD⊥EF,
∴EF是⊙O的切线;
(2)解:∵OD∥AE,
∴△ODF∽△AEF,
∴,
∵AB=4,AE=1,
∴,
∴BF=2.
【点睛】
本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.
20、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
【解析】
(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
【详解】
解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
根据题意可得,
化简得:540-10x=360,
解得:x=18,
经检验:x=18是原分式方程的解,且符合题意,
则A类图书的标价为:1.5x=1.5×18=27(元),
答:A类图书的标价为27元,B类图书的标价为18元;
(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
由题意得,,
解得:600≤t≤800,
则总利润w=(27-a-18)t+(18-12)(1000-t)
=(9-a)t+6(1000-t)
=6000+(3-a)t,
故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
【点睛】
本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
21、(1)(2)四边形是菱形.(3)
【解析】
(1)根据等边对等角及旋转的特征可得即可证得结论;
(2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;
(3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果.
【详解】
(1)
证明:(证法一)
由旋转可知,
∴
∴又
∴即
(证法二)
由旋转可知,而
∴
∴∴
即
(2)四边形是菱形.
证明:同理
∴四边形是平行四边形.
又∴四边形是菱形
(3)过点作于点,则
在中,
.由(2)知四边形是菱形,
∴
∴
【点睛】
解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.
22、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
【解析】
分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
详解:
(1)∵OB=OC=1,
∴B(1,0),C(0,-1).
∴,
解得,
∴抛物线的解析式为.
∵=,
∴点D的坐标为(2,-8).
(2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
∵∠FAB=∠EDB,
∴tan∠FAG=tan∠BDE,
即,
解得,(舍去).
当x=7时,y=,
∴点F的坐标为(7,).
当点F在x轴下方时,设同理求得点F的坐标为(5,).
综上所述,点F的坐标为(7,)或(5,).
(3)∵点P在x轴上,
∴根据菱形的对称性可知点P的坐标为(2,0).
如图,当MN在x轴上方时,设T为菱形对角线的交点.
∵PQ=MN,
∴MT=2PT.
设TP=n,则MT=2n. ∴M(2+2n,n).
∵点M在抛物线上,
∴,即.
解得,(舍去).
∴MN=2MT=4n=.
当MN在x轴下方时,设TP=n,得M(2+2n,-n).
∵点M在抛物线上,
∴,
即.
解得,(舍去).
∴MN=2MT=4n=.
综上所述,菱形对角线MN的长为或.
点睛:
1.求二次函数的解析式
(1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
23、55米
【解析】
由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.
【详解】
∵△EDC∽△EBA,△FHC∽△FBA,
,
,
,
即,
∴AC=106米,
又 ,
∴,
∴AB=55米.
答:舍利塔的高度AB为55米.
【点睛】
本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.
24、(1)见解析;(2)的半径是.
【解析】
(1)连结,易证,由于是边上的高线,从而可知,所以是的切线.
(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.
【详解】
解:(1)连结.
∵平分,
∴,又,
∴,
∴,
∵是边上的高线,
∴,
∴,
∴是的切线.
(2)∵,
∴,,
∴是中点,
∴,
∵,
∴,
∵,,
∴,
∴,
又∵,
∴,
在中,
,
∴,
∴,
,
而,
∴,
∴,
∴的半径是.
【点睛】
本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.
相关试卷
这是一份上海浦东民办未来科技学校2023-2024学年七年级(上)期末数学试题(含解析),共13页。试卷主要包含了选择题,填空题,简答题,解答题等内容,欢迎下载使用。
这是一份2023年上海市崇明区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份上海民办日日校2022年中考数学四模试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。