终身会员
搜索
    上传资料 赚现金
    2022届许昌市中考数学押题试卷含解析
    立即下载
    加入资料篮
    2022届许昌市中考数学押题试卷含解析01
    2022届许昌市中考数学押题试卷含解析02
    2022届许昌市中考数学押题试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届许昌市中考数学押题试卷含解析

    展开
    这是一份2022届许昌市中考数学押题试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,把一副三角板如图,在平面直角坐标系中,将点P,这个数是,已知,则的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列说法:
    ① ;
    ②数轴上的点与实数成一一对应关系;
    ③﹣2是的平方根;
    ④任何实数不是有理数就是无理数;
    ⑤两个无理数的和还是无理数;
    ⑥无理数都是无限小数,
    其中正确的个数有(  )
    A.2个 B.3个 C.4个 D.5个
    2.计算4+(﹣2)2×5=(  )
    A.﹣16 B.16 C.20 D.24
    3.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为(  )

    A. B. C.1 D.
    4.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )

    A. B. C. D.4
    5.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为(  )
    A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)
    C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)
    6.这个数是( )
    A.整数 B.分数 C.有理数 D.无理数
    7.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
    A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
    8.已知,则的值为
    A. B. C. D.
    9.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
    A.20 B.30 C.40 D.50
    10.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为  

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.

    12.如图,直线经过、两点,则不等式的解集为_______.

    13.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是  .
    14.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.

    15.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.

    16.如图,矩形ABCD中,AD=5,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是___________.

    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
    (1)求二次函数的解析式和该二次函数图象的顶点的坐标.
    (2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

    18.(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
    求甲、乙两种商品的每件进价;
    该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
    19.(8分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
    (1)求抛物线解析式;
    (2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
    (3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.

    20.(8分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.
    求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.
    21.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.

    22.(10分)如图,点是线段的中点,,.求证:.

    23.(12分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.
    求:△ABD的面积.

    24.如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.

    (1)求证:四边形是平行四边形;
    (2)如果,求证四边形是矩形.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据平方根,数轴,有理数的分类逐一分析即可.
    【详解】
    ①∵,∴是错误的;
    ②数轴上的点与实数成一一对应关系,故说法正确;
    ③∵=4,故-2是 的平方根,故说法正确;
    ④任何实数不是有理数就是无理数,故说法正确;
    ⑤两个无理数的和还是无理数,如 和 是错误的;
    ⑥无理数都是无限小数,故说法正确;
    故正确的是②③④⑥共4个;
    故选C.
    【点睛】
    本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如 等,也有π这样的数.
    2、D
    【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.
    详解:4+(﹣2)2×5
    =4+4×5
    =4+20
    =24,
    故选:D.
    点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
    3、B
    【解析】
    由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形,
    ∴AB=DE,
    ∴AB=DE=CD,即D为CE中点,
    ∵EF⊥BC,
    ∴∠EFC=90°,
    ∵AB∥CD,
    ∴∠ECF=∠ABC,
    ∴tan∠ECF=tan∠ABC=,
    在Rt△CFE中,EF=,tan∠ECF===,
    ∴CF=,
    根据勾股定理得,CE==,
    ∴AB=CE=,
    故选B.
    【点睛】
    本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
    4、A
    【解析】
    试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
    若旋转角度为11°,则∠ACO=30°+11°=41°.
    ∴∠AOC=180°-∠ACO-∠CAO=90°.
    在等腰Rt△ABC中,AB=4,则AO=OC=2.
    在Rt△AOD1中,OD1=CD1-OC=3,
    由勾股定理得:AD1=.
    故选A.
    考点: 1.旋转;2.勾股定理.
    5、A
    【解析】
    分顺时针旋转,逆时针旋转两种情形求解即可.
    【详解】
    解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),

    故选A.
    【点睛】
    本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
    6、D
    【解析】
    由于圆周率π是一个无限不循环的小数,由此即可求解.
    【详解】
    解:实数π是一个无限不循环的小数.所以是无理数.
    故选D.
    【点睛】
    本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
    7、B
    【解析】
    试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
    考点:一元二次方程与函数
    8、C
    【解析】
    由题意得,4−x⩾0,x−4⩾0,
    解得x=4,则y=3,则=,
    故选:C.
    9、A
    【解析】
    分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.
    详解:根据题意得: , 
    计算得出:n=20, 
    故选A.
    点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    10、B
    【解析】
    试题解析:在菱形中,,,所以,,在中,,
    因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.


    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、132°
    【解析】
    解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
    12、-1<X<2
    【解析】

    经过点A,
    ∴不等式x>kx+b>-2的解集为.
    13、1.
    【解析】
    依据调和数的意义,有-=-,解得x=1.
    14、或或1
    【解析】
    如图所示:
    ①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
    ②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
    ③当PA=PE时,底边AE=1;
    综上所述:等腰三角形AEP的对边长为或或1;
    故答案为或或1.

    15、
    【解析】
    如图所示,过点作,交于点.

    在菱形中,
    ∵,且,所以为等边三角形,

    根据“等腰三角形三线合一”可得
    ,因为,所以.
    在中,根据勾股定理可得,.
    因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.
    所以,所以,所以.
    点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.
    16、5
    【解析】
    作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题.
    【详解】
    解:作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q.

    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,
    ∴DQ⊥AE,∵DE=AD,
    ∴QE=QA,
    ∴QA+QP=QE+QP=EP,
    ∴此时QA+QP最短(垂线段最短),
    ∵∠CAB=30°,
    ∴∠DAC=60°,
    在Rt△APE中,∵∠APE=90°,AE=2AD=10,
    ∴EP=AE•sin60°=10×=5.
    故答案为5.
    【点睛】
    本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型.

    三、解答题(共8题,共72分)
    17、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
    【解析】
    (1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
    【详解】
    (1)由题意得:x1+x2=3,x1x2=﹣2m,
    x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
    解得:m=2,
    抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
    顶点坐标为(,);
    (2)存在,理由:
    将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
    ∴点A、B的坐标为(0,2)、(,),
    一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
    ∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
    ∴PB==,
    AP==2
    过点B作BM⊥AB交x轴于点M,

    ∵∠MBP=∠AOP=90°,∠MPB=∠APO,
    ∴△APO∽△MPB,
    ∴ ,∴ ,
    ∴MP=,
    ∴OM=OP﹣MP=6﹣=,
    ∴点M(,0).
    【点睛】
    本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
    18、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
    【解析】
    【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
    设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
    【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
    根据题意得,,
    解得,
    经检验,是原方程的解,
    答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
    甲乙两种商品的销售量为,
    设甲种商品按原销售单价销售a件,则

    解得,
    答:甲种商品按原销售单价至少销售20件.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
    19、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣).
    【解析】
    (1)将点A、C坐标代入抛物线解析式求解可得;
    (2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
    (3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
    【详解】
    (1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;
    (2)如图1.
    ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
    又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
    又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;

    (3)如图2,设点D的坐标为(t,0).
    ∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
    ①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);
    ②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);

    综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.
    20、(1)见解析,(2)CF=cm.
    【解析】
    (1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;
    (2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.
    【详解】
    证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,
    ∴∠CDB+∠DBC=90°.
    ∵CE⊥BD,∴∠DBC+∠ECB=90°.
    ∴∠ECB=∠CDB.
    ∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,
    ∴∠CFB=∠BCF
    ∴BF=BC
    (2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).
    在Rt△BCD中,由勾股定理得BD=.
    又∵BD•CE=BC•DC,
    ∴CE=.
    ∴BE=.
    ∴EF=BF﹣BE=3﹣.
    ∴CF=cm.
    【点睛】
    本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.
    21、见解析
    【解析】
    试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.
    试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.
    考点:平行线的性质;全等三角形的判定及性质.
    22、详见解析
    【解析】
    利用 证明 即可解决问题.
    【详解】

    证明:∵是线段的中点



    在和中,

    ∴≌

    【点睛】
    本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.
    23、2.
    【解析】
    试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.
    解:在△ADC中,AD=15,AC=12,DC=9,
    AC2+DC2=122+92=152=AD2,
    即AC2+DC2=AD2,
    ∴△ADC是直角三角形,∠C=90°,
    在Rt△ABC中,BC===16,
    ∴BD=BC﹣DC=16﹣9=7,
    ∴△ABD的面积=×7×12=2.
    24、(1)见解析;(2)见解析.
    【解析】
    (1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
    (2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
    【详解】
    证明:(1)是的中点,



    又,


    又是的中线,

    又,
    四边形是平行四边形;
    (2),

    ∴,即,

    又,

    又是的中线,

    又四边形是平行四边形,
    四边形是矩形.

    【点睛】
    本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.

    相关试卷

    河南省许昌市襄城县市级名校2021-2022学年中考数学押题试卷含解析: 这是一份河南省许昌市襄城县市级名校2021-2022学年中考数学押题试卷含解析,共22页。

    2022年山东滕州中考数学押题试卷含解析: 这是一份2022年山东滕州中考数学押题试卷含解析,共25页。试卷主要包含了正比例函数y=等内容,欢迎下载使用。

    2022年山东省曹县中考数学押题试卷含解析: 这是一份2022年山东省曹县中考数学押题试卷含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map