![2022届四川省武胜县中考押题数学预测卷含解析01](http://img-preview.51jiaoxi.com/2/3/13068758/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届四川省武胜县中考押题数学预测卷含解析02](http://img-preview.51jiaoxi.com/2/3/13068758/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届四川省武胜县中考押题数学预测卷含解析03](http://img-preview.51jiaoxi.com/2/3/13068758/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届四川省武胜县中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.计算a•a2的结果是( )
A.a B.a2 C.2a2 D.a3
2.计算2a2+3a2的结果是( )
A.5a4 B.6a2 C.6a4 D.5a2
3.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
5.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是( )
A.m<n B.m≤n C.m>n D.m≥n
6.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米 B.米 C.米 D.米
7.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )
A.甲超市的利润逐月减少
B.乙超市的利润在1月至4月间逐月增加
C.8月份两家超市利润相同
D.乙超市在9月份的利润必超过甲超市
9.一、单选题
如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
10.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.
12.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)
13.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
14.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.
15.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.
16.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
三、解答题(共8题,共72分)
17.(8分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
18.(8分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)该校有_____个班级,补全条形统计图;
(2)求该校各班留守儿童人数数据的平均数,众数与中位数;
(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
19.(8分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:1.求的值.
20.(8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
学生体能测试成绩各等次人数统计表
体能等级
调整前人数
调整后人数
优秀
8
良好
16
及格
12
不及格
4
合计
40
(1)填写统计表;
(2)根据调整后数据,补全条形统计图;
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
21.(8分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.
(1)当时,求四边形的面积;
(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.
22.(10分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.
(1)求该抛物线的解析式和顶点坐标;
(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.
①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;
②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).
23.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.
24.如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
a·a2= a3.
故选D.
2、D
【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
【详解】
2a2+3a2=5a2.
故选D.
【点睛】
本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
3、A
【解析】
分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.
【详解】
∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,
∴y1=﹣k2×(-3)=3k2,
y2=﹣k2×(-1)=k2,
∵k≠0,
∴y1>y2.
故答案选A.
【点睛】
本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.
4、B
【解析】
∵函数y=-2x2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
5、C
【解析】
分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得
距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.
详解:∵
∴此抛物线对称轴为
∵抛物线与x轴交于两点,
∴当时,得
∵
∴
∴
故选C.
点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
6、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
7、B
【解析】
二次函数,
所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
当x=2时,取得最大值,最大值为-3,选项B正确;
顶点坐标为(2,-3),选项C错误;
顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
故答案选B.
考点:二次函数的性质.
8、D
【解析】
【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.
【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;
B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;
C、8月份两家超市利润相同,此选项正确,不符合题意;
D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,
故选D.
【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
9、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
10、D
【解析】
本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.
【详解】
要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.
【点睛】
本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题分析:,解得r=.
考点:弧长的计算.
12、①②④
【解析】
①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.
【详解】
解:①连接OQ,OD,如图1.
易证四边形DOBP是平行四边形,从而可得DO∥BP.
结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
则有DQ=DA=1.
故①正确;
②连接AQ,如图4.
则有CP=,BP=.
易证Rt△AQB∽Rt△BCP,
运用相似三角形的性质可求得BQ=,
则PQ=,
∴.
故②正确;
③过点Q作QH⊥DC于H,如图4.
易证△PHQ∽△PCB,
运用相似三角形的性质可求得QH=,
∴S△DPQ=DP•QH=××=.
故③错误;
④过点Q作QN⊥AD于N,如图3.
易得DP∥NQ∥AB,
根据平行线分线段成比例可得,
则有,
解得:DN=.
由DQ=1,得cos∠ADQ=.
故④正确.
综上所述:正确结论是①②④.
故答案为:①②④.
【点睛】
本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
13、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
14、
【解析】
试题解析:∵一个布袋里装有2个红球和5个白球,
∴摸出一个球摸到红球的概率为:.
考点:概率公式.
15、
【解析】
计算出当P在直线上时a的值,再计算出当P在直线上时a的值,即可得答案.
【详解】
解:当P在直线上时,,
当P在直线上时,,
则.
故答案为
【点睛】
此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.
16、
【解析】
∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
∴其概率是=.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题(共8题,共72分)
17、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.
【解析】
分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;
(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.
详解:(1)设直线AB的解析式为:y=kx+b,
代入A(4,4),B(6,2)得:,
解得:,
∴直线AB的解析式为:y=﹣x+8,
同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,
∵工资及其他费作为:0.4×5+1=3万元,
∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,
当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;
(2)当4≤x≤6时,
w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,
∴当x=6时,w1取最大值是1,
当6≤x≤8时,
w2=﹣x2+7x﹣23=﹣(x﹣7)2+,
当x=7时,w2取最大值是1.5,
∴==6,
即最快在第7个月可还清10万元的无息贷款.
点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.
18、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
【解析】
(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
(3)利用班级数60乘以(2)中求得的平均数即可.
【详解】
解:(1)该校的班级数是:2÷2.5%=16(个).
则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
条形统计图补充如下图所示:
故答案为16;
(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
故这组数据的众数是10,中位数是(8+10)÷2=3.
即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
(3)该镇小学生中,共有留守儿童60×3=1(名).
答:该镇小学生中共有留守儿童1名.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
19、
【解析】
先根据平行线的性质证明△ADE∽△FGH,再由线段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.
【详解】
解:∵DE∥BC,∴∠ADE=∠B,
∵FG∥AB,
∴∠FGH=∠B,
∴∠ADE=∠FGH,
同理:∠AED=∠FHG,
∴△ADE∽△FGH,
∴ ,
∵DE∥BC ,FG∥AB,
∴DF=BG,
同理:FE=HC,
∵BG︰GH︰HC=2︰4︰1,
∴设BG=2k,GH=4k,HC=1k,
∴DF=2k,FE=1k,
∴DE=5k,
∴.
【点睛】
本题考查了平行线的性质和三角形相似的判定和相似比.
20、(1)12;22;12;4;50;(2)详见解析;(3)1.
【解析】
(1)求出各自的人数,补全表格即可;
(2)根据调整后的数据,补全条形统计图即可;
(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
【详解】
解:(1)填表如下:
体能等级
调整前人数
调整后人数
优秀
8
12
良好
16
22
及格
12
12
不及格
4
4
合计
40
50
故答案为12;22;12;4;50;
(2)补全条形统计图,如图所示:
(3)抽取的学生中体能测试的优秀率为24%,
则该校体能测试为“优秀”的人数为1500×24%=1(人).
【点睛】
本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
21、(1)4;(2),;(3).
【解析】
(1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
(2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
【详解】
解:(1)过点D作DE⊥x轴于点E
当时,得到,
顶点,
∴DE=1
由,得,;
令,得;
,,,
,OC=3
.
(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,
由翻折得:,
;
,
,
轴,,
,
,
由勾股定理得:,
,
,
,
,,
,
解得:(不符合题意,舍去),;
,.
(3)原抛物线的顶点在直线上,
直线交轴于点,
如图2,过点作轴于,
;
由题意,平移后的新抛物线顶点为,解析式为,
设点,,则,,,
过点作于,于,轴于,
,
,
、分别平分,,
,
点在抛物线上,
,
根据题意得:
解得:
【点睛】
此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.
22、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);
【解析】
1)把0(0,0),A(4,4v3)的坐标代入
y=﹣x2+bx+c,转化为解方程组即可.
(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.
(3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.
②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.
【详解】
(1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,
得,
解得,
∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.
所以抛物线的顶点坐标为(,);
(2)①由题意B(5,0),A(4,4),
∴直线OA的解析式为y=x,AB==7,
∵抛物线的对称轴x=,
∴P(,).
如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,
∵QC∥OB,
∴∠CQB=∠QBO=∠QBC,
∴CQ=BC=OB=5,
∴四边形BOQC是平行四边形,
∵BO=BC,
∴四边形BOQC是菱形,
设Q(m,),
∴OQ=OB=5,
∴m2+()2=52,
∴m=±,
∴点Q坐标为(﹣,)或(,);
②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.
∵AB=7,BD=5,
∴AD=2,D(,),
∵OH=HD,
∴H(,),
∴直线BH的解析式为y=﹣x+,
当y=时,x=0,
∴Q(0,).
【点睛】
本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.
23、 (1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.
【解析】
(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;
(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.
【详解】
解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台.
依题意得:,
解得:x=1.
检验x=1是原分式方程的解.
(2)由题意得=20-15=5(天)
∴现在比原计划提前5天完成.
【点睛】
此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
24、见解析
【解析】
作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.
【详解】
解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.
点P即为所求.
【点睛】
本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.
2022年四川省达州地区重点达标名校中考押题数学预测卷含解析: 这是一份2022年四川省达州地区重点达标名校中考押题数学预测卷含解析,共18页。试卷主要包含了将抛物线y=﹣等内容,欢迎下载使用。
2022届四川省简阳市简城区中考押题数学预测卷含解析: 这是一份2022届四川省简阳市简城区中考押题数学预测卷含解析,共19页。
2022届四川省金堂县中考押题数学预测卷含解析: 这是一份2022届四川省金堂县中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,互为相反数的是等内容,欢迎下载使用。