2022届天津市东丽区中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A.30° B.25°
C.20° D.15°
2.二次函数y=(2x-1)2+2的顶点的坐标是( )
A.(1,2) B.(1,-2) C.(,2) D.(-,-2)
3.下列计算正确的是( )
A. B.0.00002=2×105
C. D.
4.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为( )
A. B.1 C. D.
5.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是( )
A.3 B. C. D.
6.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数
10
20
30
50
100
150
180
240
330
450
“和为7”出现频数
2
7
10
16
30
46
59
81
110
150
“和为7”出现频率
0.20
0.35
0.33
0.32
0.30
0.30
0.33
0.34
0.33
0.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
A.0.33 B.0.34 C.0.20 D.0.35
7.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为( )
A. B. C. D.
8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=( )
A.3 B.2 C.5 D.
9.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A.68° B.20° C.28° D.22°
10.计算6m6÷(-2m2)3的结果为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____.
12.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 (用含k的代数式表示).
13.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.
14.如果,那么=_____.
15.计算(﹣a2b)3=__.
16.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
三、解答题(共8题,共72分)
17.(8分)解方程: +=1.
18.(8分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.
19.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
(1)求抛物线的解析式;
(2)当PO+PC的值最小时,求点P的坐标;
(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
20.(8分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
(1)A,B 两处粮仓原有存粮各多少吨?
(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.
21.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
22.(10分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.
23.(12分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为 ;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ= ;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
24.某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:
甲种
乙种
丙种
进价(元/台)
1200
1600
2000
售价(元/台)
1420
1860
2280
经预算,商场最多支出132000元用于购买这批电冰箱.
(1)商场至少购进乙种电冰箱多少台?
(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
2、C
【解析】
试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
考点:二次函数
点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
3、D
【解析】
在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
【详解】
解:A、原式= ;故本选项错误;
B、原式=2×10-5;故本选项错误;
C、原式= ;故本选项错误;
D、原式=;故本选项正确;
故选:D.
【点睛】
分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
4、B
【解析】
连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.
【详解】
如图,连接BC,
由网格可得AB=BC=,AC=,即AB2+BC2=AC2,
∴△ABC为等腰直角三角形,
∴∠BAC=45°,
则tan∠BAC=1,
故选B.
【点睛】
本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.
5、A
【解析】
根据锐角三角函数的性质,可知cosA==,然后根据AC=2,解方程可求得AB=3.
故选A.
点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.
6、A
【解析】
根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
【详解】
由表中数据可知,出现“和为7”的概率为0.33.
故选A.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
7、B
【解析】
匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.
【详解】
∵甲、乙两人分别以4m/s和5m/s的速度,
∴两人的相对速度为1m/s,
设乙的奔跑时间为t(s),所需时间为20s,
两人距离20s×1m/s=20m,
故选B.
【点睛】
此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.
8、B
【解析】
以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.
【详解】
如图所示:
MK=.
故选:B.
【点睛】
考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
9、D
【解析】
试题解析:∵四边形ABCD为矩形,
∴∠BAD=∠ABC=∠ADC=90°,
∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
∵∠2=∠1=112°,
而∠ABD=∠D′=90°,
∴∠3=180°-∠2=68°,
∴∠BAB′=90°-68°=22°,
即∠α=22°.
故选D.
10、D
【解析】
分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.
详解:原式=, 故选D.
点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
过O作OF⊥AO且使OF=AO,连接AF、CF,可知△AOF是等腰直角三角形,进而可得AF=AO,根据正方形的性质可得OB=OC,∠BOC=90°,由锐角互余的关系可得∠AOB=∠COF,进而可得△AOB≌△COF,即可证明AB=CF,当点A、C、F三点不共线时,根据三角形的三边关系可得AC+CF>AF,当点A、C、F三点共线时可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.
【详解】
如图,过O作OF⊥AO且使OF=AO,连接AF、CF,
∴∠AOF=90°,△AOF是等腰直角三角形,
∴AF=AO,
∵四边形BCDE是正方形,
∴OB=OC,∠BOC=90°,
∵∠BOC=∠AOF=90°,
∴∠AOB+∠AOC=∠COF+∠AOC,
∴∠AOB=∠COF,
又∵OB=OC,AO=OF,
∴△AOB≌△COF,
∴CF=AB=4,
当点A、C、F三点不共线时,AC+CF>AF,
当点A、C、F三点共线时,AC+CF=AC+AB=AF=7,
∴AF≤AC+CF=7,
∴AF的最大值是7,
∴AF=AO=7,
∴AO=.
故答案为
【点睛】
本题考查正方形的性质,全等三角形的判定与性质,熟练掌握相关定理及性质是解题关键.
12、。
【解析】
试题分析:如图,连接EG,
∵,∴设,则。
∵点E是边CD的中点,∴。
∵△ADE沿AE折叠后得到△AFE,
∴。
易证△EFG≌△ECG(HL),∴。∴。
∴在Rt△ABG中,由勾股定理得: ,即。
∴。
∴(只取正值)。
∴。
13、x>﹣1.
【解析】
一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.
【详解】
当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.
故答案为:x>﹣1.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
14、
【解析】
试题解析:
设a=2t,b=3t,
故答案为:
15、−a6b3
【解析】
根据积的乘方和幂的乘方法则计算即可.
【详解】
原式=(﹣a2b)3=−a6b3,故答案为−a6b3.
【点睛】
本题考查了积的乘方和幂的乘方,关键是掌握运算法则.
16、90°.
【解析】
根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.
【详解】
解:∵∠A+∠B+∠C=180°,∠C=30°,
∴∠A+∠B+=150°,
∵∠A﹣∠B=30°,
∴2∠A=180°,
∴∠A=90°.
故答案为:90°.
【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
三、解答题(共8题,共72分)
17、-3
【解析】
试题分析:解得x=-3
经检验: x=-3是原方程的根.
∴原方程的根是x=-3
考点:解一元一次方程
点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
18、(1)答案见解析;(2)答案见解析.
【解析】
(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;
(2)根据相似三角形的性质得到 ,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论.
本题解析:
【详解】
证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;
(2)∵△ACE∽△BDE
∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.
【点睛】
本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.
19、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)D与P重合时有最小值,求出点D的坐标即可;
(3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
【详解】
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,且顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
(2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
∴当点P与点D重合时,PO+PC的值最小,
设直线AC的解析式为y=kx+b,
根据题意,得解得
∴直线AC的解析式为,
当x=2时,,
∴当PO+PC的值最小时,点P的坐标为(2,);
(3)存在.
①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
【点睛】
二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
20、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
【解析】
(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
(3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
【详解】
(1)设A,B两处粮仓原有存粮x,y吨
根据题意得:
解得:x=270,y=1.
答:A,B两处粮仓原有存粮分别是270,1吨.
(2)A粮仓支援C粮仓的粮食是×270=162(吨),
B粮仓支援C粮仓的粮食是×1=72(吨),
A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
∵234>200,
∴此次调拨能满足C粮仓需求.
(3)如图,
根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
在Rt△ABC中,sin∠BAC=,
∴BC=AB•sin∠BAC=1×0.44=79.2.
∵此车最多可行驶4×35=140(千米)<2×79.2,
∴小王途中须加油才能安全回到B地.
【点睛】
求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
21、(1);(2)点P的坐标是(0,4)或(0,-4).
【解析】
(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.
(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.
【详解】
(1)∵B(4,2),四边形OABC是矩形,
∴OA=BC=2.
将y=2代入3得:x=2,∴M(2,2).
把M的坐标代入得:k=4,
∴反比例函数的解析式是;
(2).
∵△OPM的面积与四边形BMON的面积相等,
∴.
∵AM=2,
∴OP=4.
∴点P的坐标是(0,4)或(0,-4).
22、(1)见解析;(2)2
【解析】
试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;
(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.
(1)连接OB.
∵OA=OB,∴∠OBA=∠BAC=30°.
∴∠AOB=80°-30°-30°=20°.
∵PA切⊙O于点A,∴OA⊥PA,
∴∠OAP=90°.
∵四边形的内角和为360°,
∴∠OBP=360°-90°-60°-20°=90°.
∴OB⊥PB.
又∵点B是⊙O上的一点,
∴PB是⊙O的切线.
(2)连接OP,
∵PA、PB是⊙O的切线,
∴PA=PB,∠OPA=∠OPB=,∠APB=30°.
在Rt△OAP中,∠OAP=90°,∠OPA=30°,
∴OP=2OA=2×2=1.
∴PA=OP2-OA2=2
∵PA=PB,∠APB=60°,
∴PA=PB=AB=2.
考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质
点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
23、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).
【解析】
分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
(4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.
∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
∵∠BHA=90°,∠BAO=45°,
∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.
故答案为4.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).
由(4)得:OH=2,BH=4.
∵OC与⊙M相切于N,∴MN⊥OC.
设圆的半径为r,则MN=MB=MD=r.
∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
∴OG===2.
同理可得:OB=2,AB=4,∴BG=AB=2.
设OR=x,则RG=2﹣x.
∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
∴(2)2﹣x2=(2)2﹣(2﹣x)2.
解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
在Rt△ORB中,sin∠BOR===.
故答案为.
(4)①当∠BDE=90°时,点D在直线PE上,如图2.
此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
解得:t=4.则OP=CD=DB=4.
∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
∴点E的坐标为(4,2).
②当∠BED=90°时,如图4.
∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
∴==,∴BE=t.
∵PE∥OC,∴∠OEP=∠BOC.
∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
∴==,∴OE=t.
∵OE+BE=OB=2t+t=2.
解得:t=,∴OP=,OE=,∴PE==,
∴点E的坐标为().
③当∠DBE=90°时,如图4.
此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
则有OD=PE,EA==(6﹣t)=6﹣t,
∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
在Rt△DBE中,cos∠BED==,∴DE=BE,
∴t=t﹣2)=2t﹣4.
解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).
点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
24、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
【解析】
(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;
(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.
【详解】
(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.
根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,
解得:x≥14,
∴商场至少购进乙种电冰箱14台;
(2)由题意得:2x≤80﹣3x且x≥14,
∴14≤x≤16,
∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,
∴W随x的增大而减小,
∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,
此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
【点睛】
本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.
2023年天津市东丽区中考数学二模试卷(含解析): 这是一份2023年天津市东丽区中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年天津市东丽区中考数学二模试卷(含解析): 这是一份2023年天津市东丽区中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年天津市东丽区中考数学一模试卷(含解析): 这是一份2023年天津市东丽区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。