2022届重庆市长寿区中考一模数学试题含解析
展开
这是一份2022届重庆市长寿区中考一模数学试题含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图是某几何体的三视图,下列判断正确的是( )
A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2
C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2
2.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( )
A.11 B.16 C.17 D.16或17
3.下列运算正确的是( )
A.a4+a2=a4 B.(x2y)3=x6y3
C.(m﹣n)2=m2﹣n2 D.b6÷b2=b3
4.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12 B.9 C.6 D.4
5.x=1是关于x的方程2x﹣a=0的解,则a的值是( )
A.﹣2 B.2 C.﹣1 D.1
6.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )
A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣5
7.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1:3 B.1:4 C.1:5 D.1:6
8.实数a在数轴上的位置如图所示,则化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
9.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
10.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是( )
A.216000米 B.0.00216米
C.0.000216米 D.0.0000216米
二、填空题(本大题共6个小题,每小题3分,共18分)
11.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.
12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
13.已知a<0,那么|﹣2a|可化简为_____.
14.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .
15.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
16.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:
成绩(分)
60
70
80
90
100
人 数
4
8
12
11
5
则该办学生成绩的众数和中位数分别是( )
A.70分,80分 B.80分,80分
C.90分,80分 D.80分,90分
三、解答题(共8题,共72分)
17.(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.
如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.
(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程.
18.(8分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
19.(8分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.
(1)利用直尺和圆规在图1确定点P,使得PM=PN;
(2)设OM=x,ON=x+4,
①若x=0时,使P、M、N构成等腰三角形的点P有 个;
②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.
20.(8分)解不等式组:并把解集在数轴上表示出来.
21.(8分)一道选择题有四个选项.
(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
22.(10分)如图,在中,,垂足为D,点E在BC上,,垂足为,试判断DG与BC的位置关系,并说明理由.
23.(12分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,
求证:△ABC≌△DEF.
24.在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图①,连接AD,若,求∠B的大小;如图②,若点F为的中点,的半径为2,求AB的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,
再根据左视图的高度得出圆柱体的高为2;
故选A.
考点:由三视图判断几何体.
2、D
【解析】
试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.
故选项D正确.
考点:三角形三边关系;分情况讨论的数学思想
3、B
【解析】
分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.
详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;
根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;
根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;
根据同底数幂的除法,可知b6÷b2=b4,不正确.
故选B.
点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.
4、B
【解析】
∵点,是中点
∴点坐标
∵在双曲线上,代入可得
∴
∵点在直角边上,而直线边与轴垂直
∴点的横坐标为-6
又∵点在双曲线
∴点坐标为
∴
从而,故选B
5、B
【解析】
试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
故选B.
考点:一元一次方程的解.
6、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000 0025=2.5×10﹣6;
故选B.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
7、C
【解析】
根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
【详解】
解:连接CE,∵AE∥BC,E为AD中点,
∴ .
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.
【点睛】
本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
8、C
【解析】
根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
【详解】
解:根据数轴上点的位置得:5<a<10,
∴a﹣4>0,a﹣11<0,
则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
故选:C.
【点睛】
此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
9、B
【解析】
通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.
【详解】
由图象可知,抛物线开口向下,则,,
抛物线的顶点坐标是,
抛物线对称轴为直线,
,
,则①错误,②正确;
方程的解,可以看做直线与抛物线的交点的横坐标,
由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,
则方程有两个相等的实数根,③正确;
由抛物线对称性,抛物线与轴的另一个交点是,则④错误;
不等式可以化为,
抛物线顶点为,
当时,,
故⑤正确.
故选:.
【点睛】
本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.
10、B
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
2.16×10﹣3米=0.00216米.
故选B.
【点睛】
考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、m
【解析】
由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.
【详解】
在Rt△ADC中,∠ACD=60°,AD=4
∴tan60°==
∴CD=
∵在Rt△BCD中,∠BAD=45∘,CD=
∴BD=CD=.
∴AB=AD-BD=4-=
路况警示牌AB的高度为m.
故答案为:m.
【点睛】
解直角三角形的应用-仰角俯角问题.
12、1
【解析】
∵骑车的学生所占的百分比是×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
13、﹣3a
【解析】
根据二次根式的性质和绝对值的定义解答.
【详解】
∵a<0,
∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.
【点睛】
本题主要考查了根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.
14、40°
【解析】
连接CD,则∠ADC=∠ABC=50°,
∵AD是⊙O的直径,
∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.
15、4.027
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:4 0270 0000用科学记数法表示是4.027×1.
故答案为4.027×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、B.
【解析】
试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;
中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.
故选B.
考点:1.众数;2.中位数.
三、解答题(共8题,共72分)
17、 (1) D、E、F三点是同在一条直线上.(2) 6x2﹣13x+6=1.
【解析】
(1)利用切线长定理及梅氏定理即可求证;
(2)利用相似和韦达定理即可求解.
解:(1)结论:D、E、F三点是同在一条直线上.
证明:分别延长AD、BC交于点K,
由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,
再由切线长定理得:AC+CE=AF,BE=BF,
∴KE=AF.∴,
由梅涅劳斯定理的逆定理可证,D、E、F三点共线,
即D、E、F三点共线.
(2)∵AB=AC=5,BC=6,
∴A、E、I三点共线,CE=BE=3,AE=4,
连接IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四点共圆.
设⊙I的半径为r,则:,
∴,即,,
∴由△AEF∽△DEI得:
,
∴.
∴,
因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x2﹣13x+6=1.
点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.
18、(1)证明见解析;(2)
【解析】
(1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
【详解】
(1)连接
∵平分,
∴,
∵ ,
∴,
∴,
∴OD//AC,
∴,
∴
又是的半径,
∴是的切线
(2)由题意得
∵是弧的中点
∴弧弧
∵
∴弧弧
∴弧弧弧
∴
在中
∵
∴
.
【点睛】
本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.
19、(1)见解析;(2)①1;②:x=0或x=4﹣4或4<x<4;
【解析】
(1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.
【详解】
解:(1)如图所示:
(2)①如图所示:
故答案为1.
②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,
∴MC⊥OB,
∵∠AOB=45°,
∴△MCO是等腰直角三角形,
∴MC=OC=4,
∴
当M与D重合时,即时,同理可知:点P恰好有三个;
如图4,取OM=4,以M为圆心,以OM为半径画圆.
则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;
点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;
∴当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;
综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或
故答案为x=0或或
【点睛】
本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.
20、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.
【解析】
试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.
试题解析:由①得:﹣2x≥﹣2,即x≤1,
由②得:4x﹣2<5x+5,即x>﹣7,
所以﹣7<x≤1.
在数轴上表示为:
.
考点:解一元一次不等式组;在数轴上表示不等式的解集.
点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
21、(1);(2)
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
【详解】
解:(1)选中的恰好是正确答案A的概率为;
(2)画树状图:
共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
所以选中的恰好是正确答案A,B的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
22、DG∥BC,理由见解析
【解析】
由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.
【详解】
解:DG∥BC,理由如下:
∵CD⊥AB,EF⊥AB,
∴CD∥EF,
∴∠2=∠DCE,
∵∠1=∠2,
∴∠1=∠DCE,
∴DG∥BC.
【点睛】
本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.
23、证明见解析
【解析】
试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.
试题解析:∵AF=DC,
∴AF﹣CF=DC﹣CF,即AC=DF;
在△ABC和△DEF中
∴△ABC≌△DEF(SSS)
24、 (1)∠B=40°;(2)AB= 6.
【解析】
(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;
(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.
【详解】
解:(1)如解图①,连接OD,
∵BC切⊙O于点D,
∴∠ODB=90°,
∵∠C=90°,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠DAO=∠ADO=∠CAD=25°,
∴∠DOB=∠CAO=∠CAD+∠DAO=50°,
∵∠ODB=90°,
∴∠B=90°-∠DOB=90°-50°=40°;
(2)如解图②,连接OF,OD,
∵AC∥OD,
∴∠OFA=∠FOD,
∵点F为弧AD的中点,
∴∠AOF=∠FOD,
∴∠OFA=∠AOF,
∴AF=OA,
∵OA=OF,
∴△AOF为等边三角形,
∴∠FAO=60°,则∠DOB=60°,
∴∠B=30°,
∵在Rt△ODB中,OD=2,
∴OB=4,
∴AB=AO+OB=2+4=6.
【点睛】
本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.
相关试卷
这是一份重庆市长寿区2022年十校联考最后数学试题含解析,共28页。试卷主要包含了考生必须保证答题卡的整洁,五名女生的体重,我市某一周的最高气温统计如下表等内容,欢迎下载使用。
这是一份重庆市长寿区名校2022年中考四模数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,计算,下列代数运算正确的是等内容,欢迎下载使用。
这是一份重庆市长寿区名校2021-2022学年中考考前最后一卷数学试卷含解析,共28页。试卷主要包含了下列各式计算正确的是,下面说法正确的个数有,下列运算结果正确的是,如图,点A,B在双曲线y=等内容,欢迎下载使用。