开学活动
搜索
    上传资料 赚现金

    2022届重庆市万州第三中学中考五模数学试题含解析

    2022届重庆市万州第三中学中考五模数学试题含解析第1页
    2022届重庆市万州第三中学中考五模数学试题含解析第2页
    2022届重庆市万州第三中学中考五模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届重庆市万州第三中学中考五模数学试题含解析

    展开

    这是一份2022届重庆市万州第三中学中考五模数学试题含解析,共20页。试卷主要包含了的倒数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是(  )

    A. B. C. D.
    2.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )

    A. B. C. D.
    3.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是(  )

    百合花
    玫瑰花
    小华
    6支
    5支
    小红
    8支
    3支
    A.2支百合花比2支玫瑰花多8元
    B.2支百合花比2支玫瑰花少8元
    C.14支百合花比8支玫瑰花多8元
    D.14支百合花比8支玫瑰花少8元
    4.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是(  )
    A.千里江山图
    B.京津冀协同发展
    C.内蒙古自治区成立七十周年
    D.河北雄安新区建立纪念
    5.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则( )
    A.a>0且4a+b=0 B.a<0且4a+b=0
    C.a>0且2a+b=0 D.a<0且2a+b=0
    6.的倒数是(  )
    A.﹣ B.2 C.﹣2 D.
    7.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )
    A.圆柱 B.正方体 C.球 D.直立圆锥
    8.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是(  )
    A.﹣1 B.3 C.﹣3 D.1
    9.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
    A. B. C. D.
    10.下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.

    12.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.

    13.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为____.

    14.将代入函数中,所得函数值记为,又将代入函数中,所得的函数值记为,再将代入函数中,所得函数值记为…,继续下去.________;________;________;________.
    15.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.

    16.一个多项式与的积为,那么这个多项式为 .
    三、解答题(共8题,共72分)
    17.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.

    18.(8分)问题提出
    (1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;
    问题探究
    (2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;
    问题解决
    (3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.

    19.(8分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。

    20.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?

    21.(8分)解不等式组
    22.(10分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、.
    求证:;请你判断与的大小关系,并说明理由.
    23.(12分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)

    24.如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
    (1)求证:AE是⊙O的切线;
    (2)若AE=12,CD=10,求⊙O的半径。




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
    【详解】
    解:由题意可得,
    y==,
    当x=40时,y=6,
    故选C.
    【点睛】
    本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
    2、B
    【解析】
    由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.
    【详解】
    根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.
    故选B.
    【点睛】
    此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.
    3、A
    【解析】
    设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.
    【详解】
    设每支百合花x元,每支玫瑰花y元,根据题意得:
    8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,
    ∴2支百合花比2支玫瑰花多8元.
    故选:A.
    【点睛】
    考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
    4、C
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
    B选项不是中心对称图形,故本选项错误;
    C选项为中心对称图形,故本选项正确;
    D选项不是中心对称图形,故本选项错误.
    故选C.
    【点睛】
    本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
    5、A
    【解析】
    由图像经过点(0,m)、(4、m)可知对称轴为x=2,由n<m知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.
    【详解】
    ∵图像经过点(0,m)、(4、m)
    ∴对称轴为x=2,
    则,
    ∴4a+b=0
    ∵图像经过点(1,n),且n<m
    ∴抛物线的开口方向向上,
    ∴a>0,
    故选A.
    【点睛】
    此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.
    6、B
    【解析】
    根据乘积是1的两个数叫做互为倒数解答.
    【详解】
    解:∵×1=1
    ∴的倒数是1.
    故选B.
    【点睛】
    本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
    7、B
    【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.
    考点:简单几何体的三视图.
    8、B
    【解析】
    把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
    【详解】
    解:∵若,是一元二次方程的两个不同实数根,
    ∴,


    故选B.
    【点睛】
    本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.
    9、C
    【解析】
    根据中心对称图形的概念进行分析.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误;
    故选:C.
    【点睛】
    考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    10、A
    【解析】
    分析:根据中心对称的定义,结合所给图形即可作出判断.
    详解:A、是中心对称图形,故本选项正确;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误;
    故选:A.
    点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2或
    【解析】
    分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
    (2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
    【详解】
    解:(1)当时,

    ∵垂直平分,
    .

    (2)当时,过点A作于点,


    在与中,




    .

    故答案为或.
    【点睛】
    本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.
    12、.
    【解析】
    解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
    故答案为.
    【点睛】
    本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
    13、6
    【解析】
    试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,
    ∴AE=CE,
    设AB=AO=OC=x,
    则有AC=2x,∠ACB=30°,
    在Rt△ABC中,根据勾股定理得:BC=x,
    在Rt△OEC中,∠OCE=30°,
    ∴OE=EC,即BE=EC,
    ∵BE=3,
    ∴OE=3,EC=6,
    则AE=6
    故答案为6.
    14、 2 2
    【解析】
    根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.
    【详解】
    y1=,
    y2=−=2,
    y3=−=,
    y4=−=,
    …,
    ∴每3次计算为一个循环组依次循环,
    ∵2006÷3=668余2,
    ∴y2006为第669循环组的第2次计算,与y2的值相同,
    ∴y2006=2,
    故答案为;2;;2.
    【点睛】
    本题考查反比例函数的定义,解题的关键是多运算找规律.
    15、3
    【解析】
    试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
    考点:3.等腰三角形的性质;3.垂直平分线的性质.
    16、
    【解析】
    试题分析:依题意知
    =
    考点:整式运算
    点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。

    三、解答题(共8题,共72分)
    17、(1)详见解析;(2)80°.
    【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【解析】
    (1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【详解】
    证明:(1)∵AC=AD,
    ∴∠ACD=∠ADC,
    又∵∠BCD=∠EDC=90°,
    ∴∠ACB=∠ADE,
    在△ABC和△AED中,

    ∴△ABC≌△AED(SAS);
    解:(2)当∠B=140°时,∠E=140°,
    又∵∠BCD=∠EDC=90°,
    ∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
    【点睛】
    考点:全等三角形的判定与性质.
    18、(1);(2);(2)小贝的说法正确,理由见解析,.
    【解析】
    (1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;
    (2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;
    (1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.
    【详解】
    解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.

    ∵△DCE为等边三角形,
    ∴ED=EC,
    ∵OD=OC
    ∴OE垂直平分DC,
    ∴DHDC=1.
    ∵四边形ABCD为正方形,
    ∴△OHD为等腰直角三角形,
    ∴OH=DH=1,
    在Rt△DHE中,
    HEDH=1,
    ∴OE=HE+OH=11;
    (2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,

    在Rt△AOD中,AD=6,DO=1,
    ∴AO1,

    ∴AP=AO+OP=11;
    (1)小贝的说法正确.理由如下,
    如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,

    由题意知,点N为AD的中点,,
    ∴ANAD=1.6,ON⊥AD,
    在Rt△ANO中,
    设AO=r,则ON=r﹣1.2.
    ∵AN2+ON2=AO2,
    ∴1.62+(r﹣1.2)2=r2,
    解得:r,
    ∴AE=ON1.2,
    在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,
    ∴BO,
    ∴BP=BO+PO,
    ∴门角B到门窗弓形弧AD的最大距离为.
    【点睛】
    本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.
    19、见解析
    【解析】
    在DABC和DEAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE证得DABC≌DEAD,继而证得AC=DE.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠DAE=∠AEB.
    ∵AB=AE,
    ∴∠AEB=∠B.
    ∴∠B=∠DAE.
    ∵在△ABC和△AED中,

    ∴△ABC≌△EAD(SAS),
    ∴AC=DE.
    【点睛】
    本题主要考查了平行四边形的基本性质和全等三角形的判定及性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
    20、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【解析】
    (1)由待定系数法即可得到函数的解析式;
    (2)根据销售量×每千克利润=总利润列出方程求解即可;
    (3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
    【详解】
    (1)设y与x之间的函数关系式为:y=kx+b,
    把(2,120)和(4,140)代入得,,
    解得:,
    ∴y与x之间的函数关系式为:y=10x+100;
    (2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
    解得:x=1或x=9,
    ∵为了让顾客得到更大的实惠,
    ∴x=9,
    答:这种干果每千克应降价9元;
    (3)该干果每千克降价x元,商贸公司获得利润是w元,
    根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
    ∴w=﹣10(x﹣5)2+2250,
    ∵a=-10,∴当x=5时,
    故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【点睛】
    本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
    21、﹣1≤x<1.
    【解析】
    分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
    【详解】
    解不等式2x+1≥﹣1,得:x≥﹣1,
    解不等式x+1>4(x﹣2),得:x<1,
    则不等式组的解集为﹣1≤x<1.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    22、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行线的性质和中点的定义得到 ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.
    【详解】
    证明:(1)∵BG∥AC

    ∵是的中点

    又∵
    ∴△BDG≌△CDF

    (2)由(1)中△BDG≌△CDF
    ∴GD=FD,BG=CF
    又∵
    ∴ED垂直平分DF
    ∴EG=EF
    ∵在△BEG中,BE+BG>GE,
    ∴>
    【点睛】
    本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.
    23、37
    【解析】
    试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
    试题解析:如图所示:过点作交于点.

    在中,



    又∵在中,


    答:的长度为
    24、(1)证明见解析;(2).
    【解析】
    (1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
    (2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
    【详解】
    (1)证明:连接OA,交BC于G,

    ∵∠ABC=∠ADB.∠ABC=∠ADE,
    ∴∠ADB=∠ADE,
    ∴,
    ∴OA⊥BC,
    ∵四边形ABCE是平行四边形,
    ∴AE∥BC,
    ∴OA⊥AE,
    ∴AE是⊙O的切线;
    (2)连接OC,
    ∵AB=AC=CE,
    ∴∠CAE=∠E,
    ∵四边形ABCE是平行四边形,
    ∴BC∥AE,∠ABC=∠E,
    ∴∠ADC=∠ABC=∠E,
    ∴△ACE∽△DAE,,
    ∵AE=12,CD=10,
    ∴AE2=DE•CE,
    144=(10+CE)CE,
    解得:CE=8或-18(舍),
    ∴AC=CE=8,
    ∴Rt△AGC中,AG==2,
    设⊙O的半径为r,
    由勾股定理得:r2=62+(r-2)2,
    r=,
    则⊙O的半径是.
    【点睛】
    此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.

    相关试卷

    重庆市万州区万州高级中学2023-2024学年八年级下学期期中数学试题(含解析):

    这是一份重庆市万州区万州高级中学2023-2024学年八年级下学期期中数学试题(含解析),共22页。试卷主要包含了关于一次函数,下列结论正确的是,若关于的方程无解,则的值为等内容,欢迎下载使用。

    重庆市万州区第二高级中学2022年中考三模数学试题含解析:

    这是一份重庆市万州区第二高级中学2022年中考三模数学试题含解析,共21页。试卷主要包含了估计的值在,某商品的进价为每件元,如图,过点A,《九章算术》中有这样一个问题等内容,欢迎下载使用。

    2022年重庆市万州区名校中考数学五模试卷含解析:

    这是一份2022年重庆市万州区名校中考数学五模试卷含解析,共21页。试卷主要包含了下列计算,结果等于a4的是,下列因式分解正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map