![2022届重庆市南山中学中考押题数学预测卷含解析01](http://img-preview.51jiaoxi.com/2/3/13068878/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届重庆市南山中学中考押题数学预测卷含解析02](http://img-preview.51jiaoxi.com/2/3/13068878/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届重庆市南山中学中考押题数学预测卷含解析03](http://img-preview.51jiaoxi.com/2/3/13068878/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届重庆市南山中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.一元二次方程3x2-6x+4=0根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根
2.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )
A. B. C. D.
3.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为( )
A.25° B.30° C.35° D.40°
4.若代数式有意义,则实数x的取值范围是( )
A.x>0 B.x≥0 C.x≠0 D.任意实数
5.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A.0.2 B.0.25 C.0.4 D.0.5
6.的算术平方根为( )
A. B. C. D.
7.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )
A.a<0,b<0,c>0
B.﹣=1
C.a+b+c<0
D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根
8.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是( ).
A. B. C. D.
9.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
动时间(小时)
3
3.5
4
4.5
人数
1
1
2
1
A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
10.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
11.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )
A.30厘米、45厘米; B.40厘米、80厘米; C.80厘米、120厘米; D.90厘米、120厘米
12.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )
A.AF=CF B.∠DCF=∠DFC
C.图中与△AEF相似的三角形共有5个 D.tan∠CAD=
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.
14.因式分解:=_______________.
15.化简:= .
16.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.
17.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.
18.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
20.(6分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?
21.(6分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线.
(1)求的值和点的坐标;
(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;
(3)当时,若直线与直线和(2)反比例函数的图象分别交于点,,当间距离大于等于2时,求的取值范围.
22.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
23.(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
(1)如图1,当旋转角为90°时,求BB′的长;
(2)如图2,当旋转角为120°时,求点O′的坐标;
(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
24.(10分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
25.(10分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.
26.(12分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.
27.(12分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.
【详解】
∵a=3,b=-6,c=4,
∴∆=b2-4ac=(-6)2-4×3×4=-12<0,
∴方程3x2-6x+4=0没有实数根.
故选D.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
2、B
【解析】
解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.
点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
3、B
【解析】
如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.
【详解】
如图,连接OA,OB,OC,OE.
∵∠EBC+∠EDC=180°,∠EDC=130°,
∴∠EBC=50°,
∴∠EOC=2∠EBC=100°,
∵AB=BC=CE,
∴弧AB=弧BC=弧CE,
∴∠AOB=∠BOC=∠EOC=100°,
∴∠AOE=360°﹣3×100°=60°,
∴∠ABE=∠AOE=30°.
故选:B.
【点睛】
本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、C
【解析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
5、B
【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
6、B
【解析】
分析:先求得的值,再继续求所求数的算术平方根即可.
详解:∵=2,
而2的算术平方根是,
∴的算术平方根是,
故选B.
点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
7、D
【解析】
试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.
8、C
【解析】
分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.
解答:解:掷骰子有6×6=36种情况.
根据题意有:4n-m2<0,
因此满足的点有:n=1,m=3,4,5,6,
n=2,m=3,4,5,6,
n=3,m=4,5,6,
n=4,m=5,6,
n=5,m=5,6,
n=6,m=5,6,
共有17种,
故概率为:17÷36=.
故选C.
点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.
9、C
【解析】
试题解析:这组数据中4出现的次数最多,众数为4,
∵共有5个人,
∴第3个人的劳动时间为中位数,
故中位数为:4,
平均数为:=3.1.
故选C.
10、A
【解析】
分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.
详解:
由①得,x≤1,
由②得,x>-1,
故此不等式组的解集为:-1
故选A.
点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
11、C
【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;
当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;
当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;
所以A、B、D选项不符合题意,C选项符合题意,
故选C.
12、D
【解析】
由 又AD∥BC,所以 故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=
BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;
根据相似三角形的判定即可求解,故C正确,不符合题意;
由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.
【详解】
A.∵AD∥BC,
∴△AEF∽△CBF,
∴
∵
∴,故A正确,不符合题意;
B. 过D作DM∥BE交AC于N,
∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DF=DC,
∴∠DCF=∠DFC,故B正确,不符合题意;
C. 图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;
D. 设AD=a,AB=b,由△BAE∽△ADC,有
∵tan∠CAD 故D错误,符合题意.
故选:D.
【点睛】
考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、, +2.
【解析】
当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.
【详解】
当点P旋转至CA的延长线上时,如图2.
∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,
∴BP=,
∵BP的中点是F,
∴CF=BP= .
取AB的中点M,连接MF和CM,如图2.
∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,
∴AB=2.
∵M为AB中点,
∴CM=AB=,
∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,
∴AP=AD=4,
∵M为AB中点,F为BP中点,
∴FM=AP=2.
当且仅当M、F、C三点共线且M在线段CF上时CF最大,
此时CF=CM+FM=+2.
故答案为, +2.
【点睛】
考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.
14、a(a+b)(a-b).
【解析】
分析:本题考查的是提公因式法和利用平方差公式分解因式.
解析:原式= a(a+b)(a-b).
故答案为a(a+b)(a-b).
15、2
【解析】
根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
【详解】
∵22=4,∴=2.
【点睛】
本题考查求算术平方根,熟记定义是关键.
16、270
【解析】
根据三角形的内角和与平角定义可求解.
【详解】
解析:如图,根据题意可知∠5=90°,
∴ ∠3+∠4=90°,
∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.
【点睛】
本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.
17、1.
【解析】
试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.
考点:整体思想.
18、85°
【解析】
设∠A=∠BDA=x,∠ABD=∠ECD=y,构建方程组即可解决问题.
【详解】
解:∵BA=BD,
∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,
则有,
解得x=85°,
故答案为85°.
【点睛】
本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析(2)90°(3)AP=CE
【解析】
(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
【详解】
(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠DCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
∵∠CFP=∠EFD(对顶角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等边三角形,∴PC=CE,∴AP=CE
考点:三角形全等的证明
20、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元.
【解析】
整体分析:
(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.
解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,
由题意得,,
解得:
答:购买一副乒乓球拍28元,一副羽毛球拍60元.
(2)5×28+3×60=320元
答:购买5副乒乓球拍和3副羽毛球拍共320元.
21、(1),;(2);的取值范围是:.
【解析】
(1)把代入得出的值,进而得出点坐标;
(2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;
(3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围.
【详解】
解:(1)∵直线: 经过点,
∴,
∴,
∴;
(2)当时,将代入,
得,,
∴代入得,,
∴;
(3)当时,即,而,
如图,,当向下运动但是不超过轴时,符合要求,
∴的取值范围是:.
【点睛】
本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.
22、 (1);
(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
【解析】
(1)根据销售额=销售量×销售价单x,列出函数关系式.
(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
【详解】
解:(1)由题意得:,
∴w与x的函数关系式为:.
(2),
∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
(3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
∵3>28,∴x2=3不符合题意,应舍去.
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
23、(1)5;(2)O'(,);(3)P'(,).
【解析】
(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
【详解】
解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;
(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();
(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
∵点C与点A关于y轴对称,∴C(﹣3,0).
∵O'(),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.
∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().
【点睛】
本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.
24、规定日期是6天.
【解析】
本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.
【详解】
解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得
解方程可得x=6,
经检验x=6是分式方程的解.
答:规定日期是6天.
25、见解析
【解析】
分析:由等边三角形的性质即可得出∠ABE=∠ACF,由全等三角形的性质即可得出结论.
详解:证明:∵△ABC和△ACD均为等边三角形
∴AB=AC,∠ABC=∠ACD=60°,
∴∠ABE=∠ACF=120°,
∵BE=CF,
∴△ABE≌△ACF,
∴AE=AF,
∴∠EAB=∠FAC,
∴∠EAF=∠BAC=60°,
∴△AEF是等边三角形.
点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE≌△ACF.
26、 (1) 反比例函数的解析式为y=,一次函数的解析式为y=﹣x+1.(2)2.
【解析】
(1)根据反比例函数y2=的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;
(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.
【详解】
(1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).
把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+1.
(2)如图,设直线y=﹣x+1与x轴交于C,则C(2,0).
S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.
【点睛】
本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.
27、-4
【解析】
分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.
详解:原式=-4+1-2×+-1=-4
点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.
重庆市长寿区2022年中考押题数学预测卷含解析: 这是一份重庆市长寿区2022年中考押题数学预测卷含解析,共23页。试卷主要包含了方程x2﹣3x=0的根是,7的相反数是,-sin60°的倒数为,二次函数y=ax2+bx+c等内容,欢迎下载使用。
重庆市綦江中学2022年中考押题数学预测卷含解析: 这是一份重庆市綦江中学2022年中考押题数学预测卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是,已知抛物线y=x2-2mx-4等内容,欢迎下载使用。
2022届湖南长沙长郡中学中考押题数学预测卷含解析: 这是一份2022届湖南长沙长郡中学中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。