终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届浙江省嵊州市崇仁镇中学十校联考最后数学试题含解析

    立即下载
    加入资料篮
    2022届浙江省嵊州市崇仁镇中学十校联考最后数学试题含解析第1页
    2022届浙江省嵊州市崇仁镇中学十校联考最后数学试题含解析第2页
    2022届浙江省嵊州市崇仁镇中学十校联考最后数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省嵊州市崇仁镇中学十校联考最后数学试题含解析

    展开

    这是一份2022届浙江省嵊州市崇仁镇中学十校联考最后数学试题含解析,共20页。试卷主要包含了将抛物线y=﹣,计算a•a2的结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是(  )
    A.2 B.3 C.5 D.7
    2.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(  )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)
    A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里
    3.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于(  )

    A.2 B.3 C. 4 D.6
    4.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是(  )
    A.﹣3 B.0 C. D.﹣1
    5.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是(  )

    A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
    C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
    6.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为(  )
    A.向下平移3个单位 B.向上平移3个单位
    C.向左平移4个单位 D.向右平移4个单位
    7.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米.

    A.25 B. C. D.
    8.若正六边形的边长为6,则其外接圆半径为( )
    A.3 B.3 C.3 D.6
    9.计算a•a2的结果是(  )
    A.a B.a2 C.2a2 D.a3
    10.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
    A.60° B.120° C.60°或120° D.30°或120°
    二、填空题(共7小题,每小题3分,满分21分)
    11.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
    12.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.

    13.在反比例函数图象的每一支上,y随x的增大而______用“增大”或“减小”填空.
    14.a(a+b)﹣b(a+b)=_____.
    15.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.

    16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:

    其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
    17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.

    (1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   ;
    (1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.
    请从下列A、B两题中任选一题作答,我选择   题.
    A:①求线段AD的长;
    ②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
    B:①求线段DE的长;
    ②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    19.(5分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.
    (1)求证:四边形ABDE是平行四边形;
    (2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.

    20.(8分)先化简代数式:,再代入一个你喜欢的数求值.
    21.(10分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积

    22.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

    根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
    23.(12分)△ABC在平面直角坐标系中的位置如图所示.
    画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
    24.(14分)如图,⊙O的半径为4,B为⊙O外一点,连结OB,且OB=6.过点B作⊙O的切线BD,切点为点D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为点C.
    (1)求证:AD平分∠BAC;
    (2)求AC的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
    详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
    点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
    2、B
    【解析】
    根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE= x,AB=BE=CE=2x,由AC=AD+DE+EC=2 x+2x=30,解之即可得出答案.
    【详解】
    根据题意画出图如图所示:作BD⊥AC,取BE=CE,

    ∵AC=30,∠CAB=30°∠ACB=15°,
    ∴∠ABC=135°,
    又∵BE=CE,
    ∴∠ACB=∠EBC=15°,
    ∴∠ABE=120°,
    又∵∠CAB=30°
    ∴BA=BE,AD=DE,
    设BD=x,
    在Rt△ABD中,
    ∴AD=DE= x,AB=BE=CE=2x,
    ∴AC=AD+DE+EC=2 x+2x=30,
    ∴x= = ≈5.49,
    故答案选:B.
    【点睛】
    本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.
    3、B
    【解析】
    作BD⊥x轴于D,CE⊥x轴于E,

    ∴BD∥CE,
    ∴,
    ∵OC是△OAB的中线,
    ∴,
    设CE=x,则BD=2x,
    ∴C的横坐标为,B的横坐标为,
    ∴OD=,OE=,
    ∴DE=OE-OD=﹣=,
    ∴AE=DE=,
    ∴OA=OE+AE=,
    ∴S△OAB=OA•BD=×=1.
    故选B.
    点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.
    4、B
    【解析】
    |﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,
    ∵3>2>>1>0,
    ∴绝对值最小的数是0,
    故选:B.
    5、C
    【解析】
    解:A.小丽从家到达公园共用时间20分钟,正确;
    B.公园离小丽家的距离为2000米,正确;
    C.小丽在便利店时间为15﹣10=5分钟,错误;
    D.便利店离小丽家的距离为1000米,正确.
    故选C.
    6、A
    【解析】
    将抛物线平移,使平移后所得抛物线经过原点,
    若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;
    若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,
    故选A.
    7、B
    【解析】
    解:过点B作BE⊥AD于E.

    设BE=x.
    ∵∠BCD=60°,tan∠BCE,

    在直角△ABE中,AE=,AC=50米,
    则,
    解得
    即小岛B到公路l的距离为,
    故选B.
    8、D
    【解析】
    连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
    【详解】
    如图为正六边形的外接圆,ABCDEF是正六边形,
    ∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.

    所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
    故选D.
    【点睛】
    本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
    9、D
    【解析】
    a·a2= a3.
    故选D.
    10、C
    【解析】
    根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
    【详解】
    如图所示,

    ∵OD⊥AB,
    ∴D为AB的中点,即AD=BD=,
    在Rt△AOD中,OA=5,AD=,
    ∴sin∠AOD=,
    又∵∠AOD为锐角,
    ∴∠AOD=60°,
    ∴∠AOB=120°,
    ∴∠ACB=∠AOB=60°,
    又∵圆内接四边形AEBC对角互补,
    ∴∠AEB=120°,
    则此弦所对的圆周角为60°或120°.
    故选C.
    【点睛】
    此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、y=2x+1
    【解析】
    分析:直接根据函数图象平移的法则进行解答即可.
    详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
    故答案为y=2x+1.
    点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    12、80°.
    【解析】
    如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.
    【详解】
    如图,

    ∵m∥n,
    ∴∠1=∠3,
    ∵∠1=100°,
    ∴∠3=100°,
    ∴∠2=180°﹣100°=80°,
    故答案为80°.
    【点睛】
    本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.
    13、减小
    【解析】
    根据反比例函数的性质,依据比例系数k的符号即可确定.
    【详解】
    ∵k=2>0,
    ∴y随x的增大而减小.
    故答案是:减小.
    【点睛】
    本题考查了反比例函数的性质,反比例函数y=(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
    14、(a+b)(a﹣b).
    【解析】
    先确定公因式为(a+b),然后提取公因式后整理即可.
    【详解】
    a(a+b)﹣b(a+b)=(a+b)(a﹣b).
    【点睛】
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    15、.
    【解析】
    解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
    故答案为.
    【点睛】
    本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
    16、
    【解析】
    分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
    详解:∵平均数是12,
    ∴这组数据的和=12×7=84,
    ∴被墨汁覆盖三天的数的和=84−4×12=36,
    ∵这组数据唯一众数是13,
    ∴被墨汁覆盖的三个数为:10,13,13,


    故答案为
    点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
    17、一4
    【解析】
    分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.
    【详解】
    因为∠MAD=45°, AM=4,所以MD=4,
    因为AB=8,所以MB=12,
    因为∠MBC=30°,所以CM=MBtan30°=4.
    所以CD=4-4.
    【点睛】
    本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).
    【解析】
    (1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;
    (1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;
    ②分三种情况利用方程的思想即可得出结论;
    B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;
    ②先判断出∠APC=90°,再分情况讨论计算即可.
    【详解】
    解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,
    ∴A(3,0),C(0,2),
    ∴OA=3,OC=2.
    ∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
    ∴四边形OABC是矩形,
    ∴AB=OC=2,BC=OA=3.
    在Rt△ABC中,根据勾股定理得,AC==3.
    故答案为2,3,3;
    (1)选A.
    ①由(1)知,BC=3,AB=2,由折叠知,CD=AD.
    在Rt△BCD中,BD=AB﹣AD=2﹣AD,
    根据勾股定理得,CD1=BC1+BD1,
    即:AD1=16+(2﹣AD)1,
    ∴AD=5;
    ②由①知,D(3,5),设P(0,y).
    ∵A(3,0),
    ∴AP1=16+y1,DP1=16+(y﹣5)1.
    ∵△APD为等腰三角形,
    ∴分三种情况讨论:
    Ⅰ、AP=AD,
    ∴16+y1=15,
    ∴y=±3,
    ∴P(0,3)或(0,﹣3);
    Ⅱ、AP=DP,
    ∴16+y1=16+(y﹣5)1,
    ∴y=,
    ∴P(0,);
    Ⅲ、AD=DP,15=16+(y﹣5)1,
    ∴y=1或2,
    ∴P(0,1)或(0,2).
    综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).
    选B.①由A①知,AD=5,由折叠知,AE=AC=1,DE⊥AC于E.
    在Rt△ADE中,DE==;
    ②∵以点A,P,C为顶点的三角形与△ABC全等,
    ∴△APC≌△ABC,或△CPA≌△ABC,
    ∴∠APC=∠ABC=90°.
    ∵四边形OABC是矩形,
    ∴△ACO≌△CAB,
    此时,符合条件,点P和点O重合,即:P(0,0);
    如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,
    ∴,
    ∴,
    ∴AN=,
    过点N作NH⊥OA,
    ∴NH∥OA,
    ∴△ANH∽△ACO,
    ∴,
    ∴,
    ∴NH=,AH=,
    ∴OH=,
    ∴N(),
    而点P1与点O关于AC对称,
    ∴P1(),
    同理:点B关于AC的对称点P1,
    同上的方法得,P1(﹣).
    综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).

    【点睛】
    本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.
    19、 (1)见解析;(2)2.
    【解析】
    (1)四边形ABCD是平行四边形,由平行四边形的性质,可得AB=DE, AB//DE ,则四边形ABDE是平行四边形;
    (2)因为AD=DE=1,则AD=AB=1,四边形ABCD是菱形,由菱形的性质及解直角三角形可得AO=AB⋅sin∠ABO=2,BO=AB⋅cos∠ABO=2, BD=1 ,则AE=BD,利用勾股定理可得OE.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD.
    ∵DE=CD,
    ∴AB=DE.
    ∴四边形ABDE是平行四边形;
    (2)∵AD=DE=1,
    ∴AD=AB=1.
    ∴▱ABCD是菱形,
    ∴AB=BC,AC⊥BD,,.
    又∵∠ABC=60°,
    ∴∠ABO=30°.
    在Rt△ABO中,,.
    ∴.
    ∵四边形ABDE是平行四边形,
    ∴AE∥BD,.
    又∵AC⊥BD,
    ∴AC⊥AE.
    在Rt△AOE中,.
    【点睛】
    此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.
    20、
    【解析】
    先根据分式的运算法则进行化简,再代入使分式有意义的值计算.
    【详解】
    解:原式

    .
    使原分式有意义的值可取2,
    当时,原式.
    【点睛】
    考核知识点:分式的化简求值.掌握分式的运算法则是关键.
    21、(1),N(3,6);(2)y=-x+2,S△OMN=3.
    【解析】
    (1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
    (2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
    【详解】
    解:(1)∵点M是AB边的中点,∴M(6,3).
    ∵反比例函数y=经过点M,∴3=.∴k=1.
    ∴反比例函数的解析式为y=.
    当y=6时,x=3,∴N(3,6).
    (2)由题意,知M(6,2),N(2,6).
    设直线MN的解析式为y=ax+b,则

    解得,
    ∴直线MN的解析式为y=-x+2.
    ∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
    【点睛】
    本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
    22、(1),; (2);(3).
    【解析】
    试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.
    试题解析:(1);
    (2);
    (3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:

    由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)
    考点:统计与概率的综合运用.
    23、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
    【解析】
    (1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
    (2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
    (1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
    【详解】
    (1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
    (2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
    (1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.

    【点睛】
    本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
    24、(1)证明见解析;(2)AC=.
    【解析】
    (1)证明:连接OD.
    ∵BD是⊙O的切线,
    ∴OD⊥BD.
    ∵AC⊥BD,
    ∴OD∥AC,
    ∴∠2=∠1.
    ∵OA=OD.
    ∴∠1=∠1,
    ∴∠1=∠2,
    即AD平分∠BAC.
    (2)解:∵OD∥AC,
    ∴△BOD∽△BAC,
    ∴,即.
    解得.


    相关试卷

    浙江省杭州市春蕾中学2022年十校联考最后数学试题含解析:

    这是一份浙江省杭州市春蕾中学2022年十校联考最后数学试题含解析,共23页。试卷主要包含了的平方根是,下列运算正确的是等内容,欢迎下载使用。

    2022年鲍沟中学十校联考最后数学试题含解析:

    这是一份2022年鲍沟中学十校联考最后数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算,结果正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。

    2022届江苏省南通市如皋市白蒲镇初级中学十校联考最后数学试题含解析:

    这是一份2022届江苏省南通市如皋市白蒲镇初级中学十校联考最后数学试题含解析,共21页。试卷主要包含了平面直角坐标系中,若点A,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map