开学活动
搜索
    上传资料 赚现金

    2022年【华师大版】山西省汾西县达标名校中考三模数学试题含解析

    2022年【华师大版】山西省汾西县达标名校中考三模数学试题含解析第1页
    2022年【华师大版】山西省汾西县达标名校中考三模数学试题含解析第2页
    2022年【华师大版】山西省汾西县达标名校中考三模数学试题含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年【华师大版】山西省汾西县达标名校中考三模数学试题含解析

    展开

    这是一份2022年【华师大版】山西省汾西县达标名校中考三模数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,解分式方程﹣3=时,去分母可得,下列代数运算正确的是,下列各式计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是(  )

    A. B. C. D.
    2.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是(  )

    A.50π﹣48 B.25π﹣48 C.50π﹣24 D.
    3.﹣2018的相反数是(  )
    A.﹣2018 B.2018 C.±2018 D.﹣
    4.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    5.下列各数中,最小的数是( )
    A.﹣4 B.3 C.0 D.﹣2
    6.解分式方程﹣3=时,去分母可得(  )
    A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4
    C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4
    7.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是  

    A. B. C. D.
    8.若3x>﹣3y,则下列不等式中一定成立的是 ( )
    A. B. C. D.
    9.下列代数运算正确的是(  )
    A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3•x2=x5
    10.下列各式计算正确的是(  )
    A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a4
    二、填空题(共7小题,每小题3分,满分21分)
    11.的系数是_____,次数是_____.
    12.关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是 .
    13.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.

    14.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.
    15.已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.
    16.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程____.

    17.计算:.
    三、解答题(共7小题,满分69分)
    18.(10分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.

    19.(5分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
    (1)求证:四边形ABCD是菱形;
    (2)若∠EAF=60°,CF=2,求AF的长.

    20.(8分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
    (1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
    (2)求选出的(m,n)在二、四象限的概率.
    21.(10分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(   ,   ),B1(   ,   ),C1(   ,   );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是   .

    22.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.

    23.(12分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.

    (1)求证:∠F=∠B;
    (2)若AB=12,BG=10,求AF的长.
    24.(14分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
    【详解】
    解:由题意可得,
    y==,
    当x=40时,y=6,
    故选C.
    【点睛】
    本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
    2、B
    【解析】
    设以AB、AC为直径作半圆交BC于D点,连AD,如图,

    ∴AD⊥BC,
    ∴BD=DC=BC=8,
    而AB=AC=10,CB=16,
    ∴AD===6,
    ∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,
    =π•52﹣•16•6,
    =25π﹣1.
    故选B.
    3、B
    【解析】
    分析:只有符号不同的两个数叫做互为相反数.
    详解:-1的相反数是1.
    故选:B.
    点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
    4、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    5、A
    【解析】
    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
    【详解】
    根据有理数比较大小的方法,可得
    ﹣4<﹣2<0<3
    ∴各数中,最小的数是﹣4
    故选:A
    【点睛】
    本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
    6、B
    【解析】
    方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
    【详解】
    方程两边同时乘以(x-2),得
    1﹣3(x﹣2)=﹣4,
    故选B.
    【点睛】
    本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
    7、B
    【解析】
    由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
    【详解】
    添加,根据AAS能证明≌,故A选项不符合题意.
    B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;
    C.添加,可得,根据AAS能证明≌,故C选项不符合题意;
    D.添加,可得,根据AAS能证明≌,故D选项不符合题意,
    故选B.
    【点睛】
    本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    8、A
    【解析】
    两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
    故选A.
    9、D
    【解析】
    分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.
    【详解】
    解:A. (x+1)2=x2+2x+1,故A错误;
    B. (x3)2=x6,故B错误;
    C. (2x)2=4x2,故C错误.
    D. x3•x2=x5,故D正确.
    故本题选D.
    【点睛】
    本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.
    10、C
    【解析】
    根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.
    【详解】
    A.a4•a3=a7,故A错误;
    B.3a•4a=12a2,故B错误;
    C.(a3)4=a12,故C正确;
    D.a12÷a3=a9,故D错误.
    故选C.
    【点睛】
    本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、 1
    【解析】
    根据单项式系数及次数的定义进行解答即可.
    【详解】
    根据单项式系数和次数的定义可知,﹣的系数是,次数是1.
    【点睛】
    本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.
    12、k<1且k≠1
    【解析】
    试题分析:根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
    解:∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
    ∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
    解得k<1且k≠1.
    ∴k的取值范围为k<1且k≠1.
    故答案为k<1且k≠1.
    考点:根的判别式;一元二次方程的定义.
    13、
    【解析】
    连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.
    【详解】
    连接AG,延长AG交BC于F.

    ∵G是△ABC的重心,DE∥BC,
    ∴BF=CF,

    ∵,,
    ∴,
    ∵BF=CF,
    ∴DG=GE,
    ∵,,
    ∴,
    ∴,
    故答案为.
    【点睛】
    本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    14、
    【解析】
    本题可根据比例线段进行求解.
    【详解】
    解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.
    故答案为6.
    【点睛】
    本题主要考查比例尺和比例线段的相关知识.
    15、3
    【解析】
    ∵-3、3, -2、1、3、0、4、x的平均数是1,
    ∴-3+3-2+1+3+0+4+x=8
    ∴x=2,
    ∴一组数据-3、3, -2、1、3、0、4、2,
    ∴众数是3.
    故答案是:3.
    16、先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.
    【解析】
    根据旋转的性质,平移的性质即可得到由△DEF得到△ABC的过程.
    【详解】
    由题可得,由△DEF得到△ABC的过程为:
    先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.(答案不唯一)
    故答案为:先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.
    【点睛】
    本题考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.
    17、
    【解析】
    此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式


    【点睛】
    此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.

    三、解答题(共7小题,满分69分)
    18、这种测量方法可行,旗杆的高为21.1米.
    【解析】
    分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.
    详解:这种测量方法可行.
    理由如下:
    设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).

    所以△AGF∽△EHF.
    因为FD=1.1,GF=27+3=30,HF=3,
    所以EH=3.1﹣1.1=2,AG=x﹣1.1.
    由△AGF∽△EHF,
    得,
    即,
    所以x﹣1.1=20,
    解得x=21.1(米)
    答:旗杆的高为21.1米.
    点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.
    19、 (1)见解析;(2)2
    【解析】
    (1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;
    方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;
    (2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.
    【详解】
    (1)证法一:连接AC,如图.

    ∵AE⊥BC,AF⊥DC,AE=AF,
    ∴∠ACF=∠ACE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠DAC=∠ACB.
    ∴∠DAC=∠DCA,
    ∴DA=DC,
    ∴四边形ABCD是菱形.
    证法二:如图,

    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D.
    ∵AE⊥BC,AF⊥DC,
    ∴∠AEB=∠AFD=90°,
    又∵AE=AF,
    ∴△AEB≌△AFD.
    ∴AB=AD,
    ∴四边形ABCD是菱形.
    (2)连接AC,如图.

    ∵AE⊥BC,AF⊥DC,∠EAF=60°,
    ∴∠ECF=120°,
    ∵四边形ABCD是菱形,
    ∴∠ACF=60°,
    在Rt△CFA中,AF=CF•tan∠ACF=2.
    【点睛】
    本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
    20、(1)详见解析;(2)P=.
    【解析】
    试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
    试题解析:
    (1)画树状图得:
    则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
    (2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
    ∴所选出的m,n在第二、三四象限的概率为:P==
    点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
    (2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
    (3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
    (4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
    21、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.
    【解析】
    (1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
    (2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.
    【详解】
    (1)如图所示,△A1B1C1即为所求.

    A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).
    故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;
    (2)如图所示,△CC1C2的面积是2×1=1.
    故答案为:1.
    【点睛】
    本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
    22、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
    【解析】
    【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;
    (2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;
    (3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.
    【详解】(1)如图,连接OD,
    ∵BC是⊙O的直径,
    ∴∠BAC=90°,
    ∵AD平分∠BAC,
    ∴∠BAC=2∠BAD,
    ∵∠BOD=2∠BAD,
    ∴∠BOD=∠BAC=90°,
    ∵DP∥BC,
    ∴∠ODP=∠BOD=90°,
    ∴PD⊥OD,
    ∵OD是⊙O半径,
    ∴PD是⊙O的切线;
    (2)∵PD∥BC,
    ∴∠ACB=∠P,
    ∵∠ACB=∠ADB,
    ∴∠ADB=∠P,
    ∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
    ∴∠DCP=∠ABD,
    ∴△ABD∽△DCP;
    (3)∵BC是⊙O的直径,
    ∴∠BDC=∠BAC=90°,
    在Rt△ABC中,BC==13cm,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴∠BOD=∠COD,
    ∴BD=CD,
    在Rt△BCD中,BD2+CD2=BC2,
    ∴BD=CD=BC=,
    ∵△ABD∽△DCP,
    ∴,
    ∴,
    ∴CP=16.9cm.

    【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.
    23、(1)见解析;(2).
    【解析】
    (1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
    (2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:∵,
    ∴.
    ∴∠GAB=∠B,
    ∵AF是⊙O的切线,
    ∴AF⊥AO.
    ∴∠GAB+∠GAF=90°.
    ∵OE⊥AC,
    ∴∠F+∠GAF=90°.
    ∴∠F=∠GAB,
    ∴∠F=∠B;
    (2)解:连接OG.
    ∵∠GAB=∠B,
    ∴AG=BG.
    ∵OA=OB=6,
    ∴OG⊥AB.
    ∴,
    ∵∠FAO=∠BOG=90°,∠F=∠B,
    ∴△FAO∽△BOG,
    ∴.
    ∴.

    【点睛】
    本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    24、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
    【解析】
    设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
    【详解】
    解:设该地投入异地安置资金的年平均增长率为x.
    根据题意得:1280(1+x)2=1280+1600.
    解得x1=0.5=50%,x2=-2.5(舍去),
    答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
    【点睛】
    本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.

    相关试卷

    2022届山西省蒲县重点达标名校中考数学四模试卷含解析:

    这是一份2022届山西省蒲县重点达标名校中考数学四模试卷含解析,共17页。试卷主要包含了下列算式中,结果等于x6的是等内容,欢迎下载使用。

    2022届北京石景山达标名校中考三模数学试题含解析:

    这是一份2022届北京石景山达标名校中考三模数学试题含解析,共22页。试卷主要包含了对于数据等内容,欢迎下载使用。

    2021-2022学年山西省右玉县重点达标名校中考五模数学试题含解析:

    这是一份2021-2022学年山西省右玉县重点达标名校中考五模数学试题含解析,共21页。试卷主要包含了如图所示,,结论,正比例函数y=等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map