2022年安徽省六安市名校中考数学考试模拟冲刺卷含解析
展开
这是一份2022年安徽省六安市名校中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔,如图,能判定EB∥AC的条件是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )
A. B. C. D.
2.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是( )
A.0≤x0≤1 B.0<x0<1且x0≠
C.x0<0或x0>1 D.0<x0<1
3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
A. B. C. D.
4.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为
A. B. C. D.
5.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
6.已知正多边形的一个外角为36°,则该正多边形的边数为( ).
A.12 B.10 C.8 D.6
7.如图,能判定EB∥AC的条件是( )
A.∠C=∠ABE B.∠A=∠EBD
C.∠A=∠ABE D.∠C=∠ABC
8.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.①④⑤ B.①②④ C.①③④ D.①③⑤
9.关于反比例函数,下列说法正确的是( )
A.函数图像经过点(2,2); B.函数图像位于第一、三象限;
C.当时,函数值随着的增大而增大; D.当时,.
10.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )
A. B. C. D.
11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330
C.(1﹣10%)2x=330 D.(1+10%)x=330
12.化简÷的结果是( )
A. B. C. D.2(x+1)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.
14.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
15.我们知道方程组的解是,现给出另一个方程组,它的解是____.
16.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.
17.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
18.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.
20.(6分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
21.(6分)如图,在△ABC中,AB>AC,点D在边AC上.
(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)
(2)若BC=5,点D是AC的中点,求DE的长.
22.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
23.(8分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
(1)第一批花每束的进价是多少元.
(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
24.(10分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.
25.(10分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
26.(12分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
27.(12分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.
月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;
(2)求,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.
【详解】
A、正方体的左视图与主视图都是正方形,故A选项不合题意;
B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;
C、球的左视图与主视图都是圆,故C选项不合题意;
D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;
故选B.
【点睛】
本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
2、D
【解析】
分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.
详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==
当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;
当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.
综上所述:m<n,所求x0的取值范围0<x0<1.
故选D.
点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.
3、C
【解析】
设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.
【详解】
如图,设B′C′与CD的交点为E,连接AE,
在Rt△AB′E和Rt△ADE中,
,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋转角为30°,
∴∠DAB′=60°,
∴∠DAE=×60°=30°,
∴DE=1×=,
∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
故选C.
【点睛】
本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
4、B
【解析】
将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.
【详解】
解:,
①②得:,即,
将代入①得:,即,
将,代入得:,
解得:.
故选:.
【点睛】
此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.
5、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
6、B
【解析】
利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.
【详解】
解:360°÷36°=10,所以这个正多边形是正十边形.
故选:B.
【点睛】
本题主要考查了多边形的外角和定理.是需要识记的内容.
7、C
【解析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
【详解】
A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;
B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;
C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;
D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.
故选C.
【点睛】
本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
8、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
【详解】
解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
故①正确
则AE=10﹣4=6
t=10时,△BPQ的面积等于
∴AB=DC=8
故
故②错误
当14<t<22时,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
此时,满足条件的点有4个,故④错误.
∵△BEA为直角三角形
∴只有点P在DC边上时,有△BPQ与△BEA相似
由已知,PQ=22﹣t
∴当或时,△BPQ与△BEA相似
分别将数值代入
或,
解得t=(舍去)或t=14.1
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
9、C
【解析】
直接利用反比例函数的性质分别分析得出答案.
【详解】
A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;
B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;
C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;
D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;
故选C.
【点睛】
此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.
10、A
【解析】
根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
【详解】
解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
∴二元一次方程组的解为
故选A.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
11、D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
12、A
【解析】
原式利用除法法则变形,约分即可得到结果.
【详解】
原式=•(x﹣1)=.
故选A.
【点睛】
本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分线DE交AC于点D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.
14、3
【解析】
由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.
【详解】
∵一元二次方程ax2+bx+c=0有实数根,
∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,
∴-c≥-3,即c≤3,
∴c的最大值为3.
故答案为:3.
【点睛】
本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.
15、
【解析】
观察两个方程组的形式与联系,可得第二个方程组中,解之即可.
【详解】
解:由题意得,
解得.
故答案为:.
【点睛】
本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.
16、1.
【解析】
寻找规律:
上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;
右下是:从第二个图形开始,左下数字减上面数字差的平方:
(4-2)2,(9-3)2,(16-4)2,…
∴a=(36-6)2=1.
17、(2,0)
【解析】
【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
∵A(m,﹣3)和点B(﹣1,n),
∴OE=1,AF=3,
∵∠ACB=45°,
∴∠APB=90°,
∴∠BPE+∠APF=90°,
∵∠BPE+∠EBP=90°,
∴∠APF=∠EBP,
∵∠BEP=∠AFP=90°,PA=PB,
∴△BPE≌△PAF,
∴PE=AF=3,
设P(a,0),
∴a+1=3,
a=2,
∴P(2,0),
故答案为(2,0).
【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
18、9.2×10﹣1.
【解析】
根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
【详解】
根据科学记数法的正确表示形式可得:
0.00092用科学记数法表示是9.2×10﹣1.
故答案为: 9.2×10﹣1.
【点睛】
本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 “石鼓阁”的高AB的长度为56m.
【解析】
根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得=,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得=,代入数值计算即可得出结论.
【详解】
由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,
由反射定律可知:∠ACB=∠ECD,
则△ABC∽△EDC,
∴=,
即=①,
∵∠AHB=∠GHF,
∴△ABH∽△GFH,
∴=,即=②,
联立①②,解得:AB=56,
答:“石鼓阁”的高AB的长度为56m.
【点睛】
本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
20、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
21、(1)作图见解析;(2)
【解析】
(1)根据作一个角等于已知角的步骤解答即可;
(2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.
【详解】
解:(1)如图,∠ADE为所作;
(2)∵∠ADE=∠ACB,
∴DE∥BC,
∵点D是AC的中点,
∴DE为△ABC的中位线,
∴DE=BC=.
22、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
【解析】
(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
【详解】
解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
故答案为: 1000﹣x,﹣10x2+1300x﹣1.
(2)﹣10x2+1300x﹣1=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,
解得:44≤x≤46 .
w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
23、(1)2元;(2)第二批花的售价至少为元;
【解析】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
根据题意得:,
解得:,
经检验:是原方程的解,且符合题意.
答:第一批花每束的进价是2元.
(2)由可知第二批菊花的进价为元.
设第二批菊花的售价为m元,
根据题意得:,
解得:.
答:第二批花的售价至少为元.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
24、见解析
【解析】
根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
【详解】
∵BF 平分∠ABC,
∴∠ABF=∠CBF,
∵∠BAC=90°,AD⊥BC,
∴∠ABF+∠AFB=∠CBF+∠BED=90°,
∴∠AFB=∠BED,
∵∠AEF=∠BED,
∴∠AFE=∠AEF,
∴AE=AF.
【点睛】
本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
25、x=3时,原式=
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
【详解】
解:原式=÷
=×
=,
解不等式组得,2<x<,
∵x取整数,
∴x=3,
当x=3时,原式=.
【点睛】
本题主要考查分式额化简求值及一元一次不等式组的整数解.
26、13.1.
【解析】
试题分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.
试题解析:如图作CM∥AB交AD于M,MN⊥AB于N.
由题意=,即=,CM=,
在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,
∴tan72°=,
∴AN≈12.3,
∵MN∥BC,AB∥CM,
∴四边形MNBC是平行四边形,
∴BN=CM=,
∴AB=AN+BN=13.1米.
考点:解直角三角形的应用.
27、 (1),不可能;(2)不存在;(3)1或11.
【解析】
试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
试题解析:(1)由题意设,由表中数据,得
解得∴.
由题意,若,则.
∵x>0,∴.
∴不可能.
(2)将n=1,x=120代入,得
120=2-2k+9k+27.解得k=13.
将n=2,x=100代入也符合.
∴k=13.
由题意,得18=6+,求得x=50.
∴50=,即.
∵,∴方程无实数根.
∴不存在.
(3)第m个月的利润为w==;
∴第(m+1)个月的利润为
W′=.
若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
∴m=1或11.
考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.
相关试卷
这是一份安徽省合肥市肥西县重点名校2021-2022学年中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份安徽省蚌埠市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,有下列四种说法等内容,欢迎下载使用。
这是一份安徽省定远县达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,对于一组统计数据等内容,欢迎下载使用。