年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年北京市延庆县名校中考押题数学预测卷含解析

    2022年北京市延庆县名校中考押题数学预测卷含解析第1页
    2022年北京市延庆县名校中考押题数学预测卷含解析第2页
    2022年北京市延庆县名校中考押题数学预测卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年北京市延庆县名校中考押题数学预测卷含解析

    展开

    这是一份2022年北京市延庆县名校中考押题数学预测卷含解析,共19页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是(  )
    A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
    B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
    C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
    D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
    2.下列运算正确的是( )
    A. B. C. D.
    3.解分式方程 ,分以下四步,其中,错误的一步是(  )
    A.方程两边分式的最简公分母是(x﹣1)(x+1)
    B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
    C.解这个整式方程,得x=1
    D.原方程的解为x=1
    4.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是(  )
    A. B.
    C. D.
    5.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是( )
    A.3 B.﹣1 C.﹣3 D.﹣2
    6.下列因式分解正确的是( )
    A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2
    C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)
    7.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是(  )

    A.红花、绿花种植面积一定相等
    B.紫花、橙花种植面积一定相等
    C.红花、蓝花种植面积一定相等
    D.蓝花、黄花种植面积一定相等
    8.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )

    A. B. C. D.
    9.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(  )

    A. B. C. D.
    10.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是   (添加一个条件即可).

    12.观察下列一组数,,,,,…探究规律,第n个数是_____.
    13.肥皂泡的泡壁厚度大约是,用科学记数法表示为 _______.
    14.如图,已知,,则________.

    15.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.
    其中正确的是______.(填序号)

    16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.

    17.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是   .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
    19.(5分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).
    (1)求此抛物线的解析式;
    (2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);
    (3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.

    20.(8分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
    ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
    ②若PN≥PM,结合函数的图象,直接写出n的取值范围.

    21.(10分)先化简,再求值:,其中x满足x2-2x-2=0.
    22.(10分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.

    23.(12分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.

    24.(14分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    把点P的横坐标减4,纵坐标减3可得P1的坐标;
    让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
    让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
    【详解】
    ∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
    ∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
    ∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
    故选D.
    【点睛】
    本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
    2、D
    【解析】
    根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.
    【详解】
    解:A、B两项不是同类项,所以不能合并,故A、B错误,
    C、D考查幂的乘方运算,底数不变,指数相乘. ,故D正确;
    【点睛】
    本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.
    3、D
    【解析】
    先去分母解方程,再检验即可得出.
    【详解】
    方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
    【点睛】
    本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
    4、B
    【解析】
    选项A中,由一次函数y=x+k的图象知k0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.
    故选B.
    5、C
    【解析】
    试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.
    【考点】根与系数的关系;一元二次方程的解.
    6、C
    【解析】
    试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)
    故选C,考点:因式分解
    【详解】
    请在此输入详解!
    7、C
    【解析】
    图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
    【详解】
    解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
    故选择C.
    【点睛】
    本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
    8、B
    【解析】
    试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
    考点:三视图.
    9、B
    【解析】
    试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积==10π .故选B.
    10、A
    【解析】
    分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。

    二、填空题(共7小题,每小题3分,满分21分)
    11、AE=AD(答案不唯一).
    【解析】
    要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).
    12、
    【解析】
    根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.
    【详解】
    解:因为分子的规律是连续的正整数,分母的规律是2n+1,
    所以第n个数就应该是:,
    故答案为.
    【点睛】
    此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.
    13、7×10-1.
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.0007=7×10-1.
    故答案为:7×10-1.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    14、65°
    【解析】
    根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】

    ∵m∥n,∠1=105°,
    ∴∠3=180°−∠1=180°−105°=75°
    ∴∠α=∠2−∠3=140°−75°=65°
    故答案为:65°.
    【点睛】
    此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.
    15、①②④
    【解析】
    ①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断
    ②由旋转得出AD=AF, ∠DAE=∠EAF,及公共边即可证明
    ③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明
    ④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定④正确
    【详解】
    由旋转,可知:∠CAD=∠BAF.
    ∵∠BAC=90°,∠DAE=45°,
    ∴∠CAD+∠BAE=45°,
    ∴∠BAF+∠BAE=∠EAF=45°,结论①正确;
    ②由旋转,可知:AD=AF
    在△AED和△AEF中,
    ∴△AED≌△AEF(SAS),结论②正确;
    ③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°两个条件,
    无法证出△ABE∽△ACD,结论③错误;
    ④由旋转,可知:CD=BF,∠ACD=∠ABF=45°,
    ∴∠EBF=∠ABE+∠ABF=90°,
    ∴BF1+BE1=EF1.
    ∵△AED≌△AEF,
    EF=DE,
    又∵CD=BF,
    ∴BE1+DC1=DE1,结论④正确.
    故答案为:①②④
    【点睛】
    本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键
    16、1
    【解析】
    首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
    【详解】
    ∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
    ∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
    ∴AB=AC,
    ∵∠BPC=90°,
    ∴PA=AB=AC=a,
    如图延长AD交⊙D于P′,此时AP′最大,
    ∵A(1,0),D(4,4),
    ∴AD=5,
    ∴AP′=5+1=1,
    ∴a的最大值为1.
    故答案为1.

    【点睛】
    圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.
    17、2
    【解析】
    过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
    【详解】
    解:连接OB,OA′,AA′,
    ∵AA′关于直线MN对称,

    ∵∠AMN=40°,
    ∴∠A′ON=80°,∠BON=40°,
    ∴∠A′OB=120°,
    过O作OQ⊥A′B于Q,
    在Rt△A′OQ中,OA′=2,
    ∴A′B=2A′Q=
    即PA+PB的最小值.
    【点睛】
    本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.

    三、解答题(共7小题,满分69分)
    18、(1);(2);(3)第一题.
    【解析】
    (1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;
    (2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
    (3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.
    【详解】
    (1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;
    故答案为;
    (2)画树状图为:

    共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;
    (3)建议小明在第一题使用“求助”.理由如下:
    小明将“求助”留在第一题,
    画树状图为:

    小明将“求助”留在第一题使用,小明顺利通关的概率=,
    因为>,
    所以建议小明在第一题使用“求助”.
    【点睛】
    本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.
    19、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).
    【解析】
    (1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;
    (2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;
    (3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.
    【详解】
    解:(1)当x=0时,y=3,
    ∴A(0,3)即OA=3,
    ∵OA=OC,
    ∴OC=3,
    ∴C(3,0),
    ∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)
    ∴,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)如图1,延长PE交x轴于点H,

    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4),
    设直线CD的解析式为y=kx+b,
    将点C(3,0)、D(1,4)代入,得: ,
    解得:,
    ∴y=﹣2x+6,
    ∴E(t,﹣2t+6),P(t,﹣t2+2t+3),
    ∴PH=﹣t2+2t+3,EH=﹣2t+6,
    ∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;
    (3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,

    ∵D(1,4),B(﹣1,0),C(3,0),
    ∴BK=2,KC=2,
    ∴DK垂直平分BC,
    ∴BD=CD,
    ∴∠BDK=∠CDK,
    ∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,
    ∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,
    ∴∠CDK+∠DEQ=45°,即∠RNE=45°,
    ∵ER⊥DK,
    ∴∠NER=45°,
    ∴∠MEQ=∠MQE=45°,
    ∴QM=ME,
    ∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,
    ∴△DQT≌△ECH,
    ∴DT=EH,QT=CH,
    ∴ME=4﹣2(﹣2t+6),
    QM=MT+QT=MT+CH=t﹣1+(3﹣t),
    4﹣2(﹣2t+6)=t﹣1+(3﹣t),
    解得:t=,
    ∴P(,).
    【点睛】
    本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.
    20、 (1) k的值为3,m的值为1;(2)0

    相关试卷

    昌都市市级名校2021-2022学年中考押题数学预测卷含解析:

    这是一份昌都市市级名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了下列运算正确的是,-的立方根是等内容,欢迎下载使用。

    2022年贵州省安顺市名校中考押题数学预测卷含解析:

    这是一份2022年贵州省安顺市名校中考押题数学预测卷含解析,共17页。试卷主要包含了如图所示,在平面直角坐标系中A等内容,欢迎下载使用。

    2021-2022学年湛江市重点名校中考押题数学预测卷含解析:

    这是一份2021-2022学年湛江市重点名校中考押题数学预测卷含解析,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map