年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年广东省梅州市大埔县中考四模数学试题含解析

    2022年广东省梅州市大埔县中考四模数学试题含解析第1页
    2022年广东省梅州市大埔县中考四模数学试题含解析第2页
    2022年广东省梅州市大埔县中考四模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省梅州市大埔县中考四模数学试题含解析

    展开

    这是一份2022年广东省梅州市大埔县中考四模数学试题含解析,共19页。试卷主要包含了已知,民族图案是数学文化中的一块瑰宝,点A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    2.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
    A.3或6 B.1或6 C.1或3 D.4或6
    3.如图图形中,可以看作中心对称图形的是(  )
    A. B. C. D.
    4.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为(  )
    A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
    5.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    6.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )

    A. B. C. D.
    7.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为(  )
    A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<4
    8.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为(  )
    A.0 B.﹣1 C.1 D.72017
    9.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
    A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
    C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
    10.如图,直线被直线所截,,下列条件中能判定的是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.因式分解:x2﹣10x+24=_____.
    12.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.

    13.下面是“作已知圆的内接正方形”的尺规作图过程.
    已知:⊙O.
    求作:⊙O的内接正方形.
    作法:如图,
    (1)作⊙O的直径AB;
    (2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;
    (3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.
    请回答:该尺规作图的依据是_____.

    14.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.

    15.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.

    16.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
    求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.
    18.(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
    生产甲产品件数(件)
    生产乙产品件数(件)
    所用总时间(分钟)
    10
    10
    350
    30
    20
    850
    (1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
    (2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
    ①用含a的代数式表示小王四月份生产乙种产品的件数;
    ②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
    19.(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
    求楼间距AB;
    若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,

    20.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
    (I)如图①,若BC为⊙O的直径,求BD、CD的长;
    (II)如图②,若∠CAB=60°,求BD、BC的长.

    21.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
    对冬奥会了解程度的统计表
    对冬奥会的了解程度
    百分比
    A非常了解
    10%
    B比较了解
    15%
    C基本了解
    35%
    D不了解
    n%

    (1)n=   ;
    (2)扇形统计图中,D部分扇形所对应的圆心角是   ;
    (3)请补全条形统计图;
    (4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
    22.(10分)先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.
    23.(12分)如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).
    (1)求k、m的值;
    (2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.

    ①当n=3时,求线段AB上的整点个数;
    ②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.
    24.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
    求证:AB=DC.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    2、B
    【解析】
    分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
    详解:如图,

    当h<2时,有-(2-h)2=-1,
    解得:h1=1,h2=3(舍去);
    当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
    当h>5时,有-(5-h)2=-1,
    解得:h3=4(舍去),h4=1.
    综上所述:h的值为1或1.
    故选B.
    点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
    3、D
    【解析】
    根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形,关键掌握中心对称图形定义.
    4、D
    【解析】
    根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:
    686000=6.86×105,
    故选:D.
    5、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    6、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,
    A、不是轴对称图形,是中心对称图形,故本选项错误;
    B、是轴对称图形,也是中心对称图形,故本选项错误;
    C、不是轴对称图形,也不是中心对称图形,故本选项正确;
    D、是轴对称图形,也是中心对称图形,故本选项错误.
    故选C.
    7、C
    【解析】
    先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
    【详解】
    解:∵一个正方形花坛的面积为,其边长为,


    则a的取值范围为:.
    故选:C.
    【点睛】
    此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
    8、B
    【解析】
    根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.
    【详解】
    解:由题意,得
    a=-4,b=1.
    (a+b)2017=(-1)2017=-1,
    故选B.
    【点睛】
    本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.
    9、C
    【解析】
    试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
    【详解】
    .故选C.
    解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
    1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
    10、C
    【解析】
    试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
    B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
    C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;
    D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
    故选C.


    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(x﹣4)(x﹣6)
    【解析】
    因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.
    【详解】
    x2﹣10x+24= x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)
    【点睛】
    本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.
    12、(15﹣5)
    【解析】
    先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
    【详解】
    ∵P为AB的黄金分割点(AP>PB),
    ∴AP=AB=×10=5﹣5,
    ∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.
    故答案为(15﹣5).
    【点睛】
    本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.
    13、相等的圆心角所对的弦相等,直径所对的圆周角是直角.
    【解析】
    根据圆内接正四边形的定义即可得到答案.
    【详解】
    到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.
    【点睛】
    本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.
    14、
    【解析】
    过点作于,根据三角形的性质及三角形内角和定理可计算
    再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
    【详解】
    如图,过点作于,
    ∵,
    ∴.
    ∵将绕点逆时针旋转,使点落在点处,此时点落在点处,



    在中,∵

    ∴,
    在中,∵,
    ∴,
    ∴.
    故答案为.
    【点睛】
    本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
    15、50°
    【解析】
    先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.
    【详解】
    如图所示:

    ∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
    ∴∠BEF=∠1+∠F=50°,
    ∵AB∥CD,
    ∴∠2=∠BEF=50°,
    故答案是:50°.
    【点睛】
    考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).
    16、一
    【解析】
    试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
    ∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
    ∴k﹣1<0且k+1<0, 解得:k<﹣1,
    ∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
    考点:一次函数的性质

    三、解答题(共8题,共72分)
    17、(1)见解析;(2)见解析;
    【解析】
    (1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
    (2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
    在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
    ∴△ABE≌△CDF(SAS).
    (2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
    ∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
    ∴四边形BFDE是平行四边形.
    18、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
    【解析】
    (1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
    (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
    ②根据“小王四月份的工资不少于1500元”即可列出不等式.
    【详解】
    (1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:

    解这个方程组得:,
    答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
    (2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
    ∴一小时生产甲产品4件,生产乙产品3件,
    所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
    ②依题意:1.5a+2.8(600-)≥1500,
    1680﹣0.6a≥1500,
    解得:a≤1.
    【点睛】
    本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
    19、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
    【解析】
    如图,作于M,于则,设想办法构建方程即可解决问题.
    求出AC,AD,分两种情形解决问题即可.
    【详解】
    解:如图,作于M,于则,设.
    在中,,
    在中,,



    的长为50m.

    由可知:,
    ,,
    ,,
    冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
    【点睛】
    考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    20、(1)BD=CD=5;(2)BD=5,BC=5.
    【解析】
    (1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;
    (2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.
    【详解】
    (1)∵BC是⊙O的直径,
    ∴∠CAB=∠BDC=90°.
    ∵AD平分∠CAB,
    ∴,
    ∴CD=BD.
    在直角△BDC中,BC=10,CD2+BD2=BC2,
    ∴BD=CD=5,
    (2)如图②,连接OB,OD,OC,

    ∵AD平分∠CAB,且∠CAB=60°,
    ∴∠DAB=∠CAB=30°,
    ∴∠DOB=2∠DAB=60°.
    又∵OB=OD,
    ∴△OBD是等边三角形,
    ∴BD=OB=OD.
    ∵⊙O的直径为10,则OB=5,
    ∴BD=5,
    ∵AD平分∠CAB,
    ∴,
    ∴OD⊥BC,设垂足为E,
    ∴BE=EC=OB•sin60°=,
    ∴BC=5.
    【点睛】
    本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    21、 (1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.
    【解析】
    (1)根据统计图可以求出这次调查的n的值;
    (2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
    (3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
    (4)根据题意可以写出树状图,从而可以解答本题.
    【详解】
    解:(1)n%=1﹣10%﹣15%﹣35%=40%,
    故答案为40;
    (2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,
    故答案为144°;
    (3)调查的结果为D等级的人数为:400×40%=160,
    故补全的条形统计图如右图所示,

    (4)由题意可得,树状图如右图所示,
    P(奇数)
    P(偶数)
    故游戏规则不公平.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    22、2
    【解析】
    试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.
    试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,
    当a=1时,原式=14+16﹣1﹣1=2.
    23、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.
    【解析】
    (1)将A点代入直线解析式可求m,再代入,可求k.
    (2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.
    ②根据图象可以直接判断2≤n<3.
    【详解】
    (1)∵点A(1,m)在y=2x+1上,
    ∴m=2×1+1=3.
    ∴A(1,3).
    ∵点A(1,3)在函数的图象上,
    ∴k=3.
    (2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1).
    ∵整点在线段AB上
    ∴1≤x≤3且x为整数
    ∴x=1,2,3
    ∴当x=1时,y=3,
    当x=2时,y=5,
    当x=3时,y=7,
    ∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.

    ②由图象可得当2≤n<3时,有五个整点.
    【点睛】
    本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.
    24、∵平分平分,

    在与中,



    【解析】
    分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.
    解答:证明:∵AC平分∠BCD,BC平分∠ABC,
    ∴∠DBC=∠ABC,∠ACB=∠DCB,
    ∵∠ABC=∠DCB,
    ∴∠ACB=∠DBC,
    ∵在△ABC与△DCB中,

    ∴△ABC≌△DCB,
    ∴AB=DC.

    相关试卷

    2024年广东省梅州市大埔县进光中学中考一模数学试题(原卷版+解析版):

    这是一份2024年广东省梅州市大埔县进光中学中考一模数学试题(原卷版+解析版),文件包含2024年广东省梅州市大埔县进光中学中考一模数学试题原卷版docx、2024年广东省梅州市大埔县进光中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    2023年广东省梅州市大埔县进光中学中考数学一模试卷:

    这是一份2023年广东省梅州市大埔县进光中学中考数学一模试卷,共20页。试卷主要包含了的y与x的部分对应值如下表等内容,欢迎下载使用。

    2023年广东省梅州市大埔县中考数学一模试卷(含解析):

    这是一份2023年广东省梅州市大埔县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map