终身会员
搜索
    上传资料 赚现金

    2022年广州市从化区从化七中学中考数学猜题卷含解析

    立即下载
    加入资料篮
    2022年广州市从化区从化七中学中考数学猜题卷含解析第1页
    2022年广州市从化区从化七中学中考数学猜题卷含解析第2页
    2022年广州市从化区从化七中学中考数学猜题卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广州市从化区从化七中学中考数学猜题卷含解析

    展开

    这是一份2022年广州市从化区从化七中学中考数学猜题卷含解析,共22页。试卷主要包含了计算﹣1﹣,九年级等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列分式中,最简分式是( )
    A. B. C. D.
    2.下列命题中,真命题是(  )
    A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离
    B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切
    C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切
    D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离
    3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为(  )

    A. B. C. D.
    4.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于(  )

    A.30°10′ B.29°10′ C.29°50′ D.50°10′
    5.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为(  )

    A.13 B.17 C.18 D.25
    6.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是(  )

    A.①③ B.②③ C.③④ D.②④
    7.计算﹣1﹣(﹣4)的结果为(  )
    A.﹣3 B.3 C.﹣5 D.5
    8.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )
    A.204×103 B.20.4×104 C.2.04×105 D.2.04×106
    9.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为(  )

    A. B. C.4 D.2+
    10.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于__(结果用、的线性组合表示).
    12.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
    13.若a,b互为相反数,则a2﹣b2=_____.
    14.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.

    15.计算:的结果是_____.
    16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.

    17.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.

    三、解答题(共7小题,满分69分)
    18.(10分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.

    (1)求树DE的高度;
    (2)求食堂MN的高度.
    19.(5分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.
    月份(月)

    1

    2

    成本(万元/件)

    11

    12

    需求量(件/月)

    120

    100

    (1)求与满足的关系式,请说明一件产品的利润能否是12万元;
    (2)求,并推断是否存在某个月既无盈利也不亏损;
    (3)在这一年12个月中,若第个月和第个月的利润相差最大,求.
    20.(8分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
    (1)A点坐标为   ;B点坐标为   ;F点坐标为   ;
    (2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
    (3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.

    21.(10分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.
    (1)求证:AC是⊙O的切线;
    (2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)

    22.(10分)综合与实践:
    概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .

    问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.

    拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
    23.(12分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
    (1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
    (2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
    (3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.

    24.(14分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.
    (1)求A′到BD的距离;
    (2)求A′到地面的距离.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.
    考点:最简分式.
    2、D
    【解析】
    根据两圆的位置关系、直线和圆的位置关系判断即可.
    【详解】
    A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;
    B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;
    C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;
    D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;
    故选:D.
    【点睛】
    本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.
    3、A
    【解析】
    转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可
    【详解】
    奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:
    P(奇数)= = .故此题选A.
    【点睛】
    此题主要考查了几何概率,正确应用概率公式是解题关键.
    4、C
    【解析】
    根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.
    【详解】
    ∵AB∥CD,
    ∴∠D=∠A=50°10′,
    ∵∠COD=100°,
    ∴∠C=180°-∠D-∠COD=29°50′.
    故选C.
    【点睛】
    本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.
    5、C
    【解析】
    在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.
    6、D
    【解析】
    ①错误.由题意a>1.b>1,c<1,abc<1;
    ②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
    ③错误.抛物线与x轴的另一个交点是(1,1);
    ④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    【详解】
    解:∵抛物线开口向上,∴a>1,
    ∵抛物线交y轴于负半轴,∴c<1,
    ∵对称轴在y轴左边,∴- <1,
    ∴b>1,
    ∴abc<1,故①错误.
    ∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
    当ax2+bx+c<mx+n时,-3<x<-1;
    即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
    抛物线与x轴的另一个交点是(1,1),故③错误,
    ∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
    ∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    故选:D.
    【点睛】
    本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    7、B
    【解析】
    原式利用减法法则变形,计算即可求出值.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
    8、C
    【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.
    考点:科学记数法—表示较大的数.
    9、B
    【解析】
    根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
    【详解】
    如图:

    BC=AB=AC=1,
    ∠BCB′=120°,
    ∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
    10、C
    【解析】
    试题分析:由题意可得,
    第一小组对应的圆心角度数是:×360°=72°,
    故选C.
    考点:1.扇形统计图;2.条形统计图.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据三角形法则求出即可解决问题;
    【详解】
    如图,

    ∵=, =,
    ∴=+=-,
    ∵BD=BC,
    ∴=.
    故答案为.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    12、1
    【解析】
    底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
    【详解】
    试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
    ②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
    故填1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
    13、1
    【解析】
    【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.
    【详解】∵a,b互为相反数,
    ∴a+b=1,
    ∴a2﹣b2=(a+b)(a﹣b)=1,
    故答案为1.
    【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.
    14、6n+1.
    【解析】
    寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:
    第1个图形有8根火柴棒,
    第1个图形有14=6×1+8根火柴棒,
    第3个图形有10=6×1+8根火柴棒,
    ……,
    第n个图形有6n+1根火柴棒.
    15、
    【解析】
    试题分析:先进行二次根式的化简,然后合并同类二次根式即可,

    考点:二次根式的加减
    16、12
    【解析】
    连接AO,BO,CO,如图所示:

    ∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
    ∴∠AOB==60°,∠AOC==90°,
    ∴∠BOC=30°,
    ∴n==12,
    故答案为12.
    17、-1.
    【解析】
    设正方形的对角线OA长为1m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax1+c中,即可求出a和c,从而求积.
    【详解】
    设正方形的对角线OA长为1m,则B(﹣m,m),C(m,m),A(0,1m);
    把A,C的坐标代入解析式可得:c=1m①,am1+c=m②,
    ①代入②得:am1+1m=m,
    解得:a=-,
    则ac=-1m=-1.
    考点:二次函数综合题.

    三、解答题(共7小题,满分69分)
    18、(1)12米;(2)(2+8)米
    【解析】
    (1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
    (2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
    【详解】
    (1)如图,设DE=x,
    ∵AB=DF=4,∠ACB=30°,
    ∴AC=8,
    ∵∠ECD=60°,
    ∴△ACE是直角三角形,
    ∵AF∥BD,
    ∴∠CAF=30°,
    ∴∠CAE=60°,∠AEC=30°,
    ∴AE=16,
    ∴Rt△AEF中,EF=8,
    即x﹣4=8,
    解得x=12,
    ∴树DE的高度为12米;
    (2)延长NM交DB延长线于点P,则AM=BP=6,
    由(1)知CD=CE=×AC=4,BC=4,
    ∴PD=BP+BC+CD=6+4+4=6+8,
    ∵∠NDP=45°,且∠NPD=90°,
    ∴NP=PD=6+8,
    ∴NM=NP﹣MP=6+8﹣4=2+8,
    ∴食堂MN的高度为(2+8)米.

    【点睛】
    此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
    19、 (1),不可能;(2)不存在;(3)1或11.
    【解析】
    试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
    试题解析:(1)由题意设,由表中数据,得
    解得∴.
    由题意,若,则.
    ∵x>0,∴.
    ∴不可能.
    (2)将n=1,x=120代入,得
    120=2-2k+9k+27.解得k=13.
    将n=2,x=100代入也符合.
    ∴k=13.
    由题意,得18=6+,求得x=50.
    ∴50=,即.
    ∵,∴方程无实数根.
    ∴不存在.
    (3)第m个月的利润为w==;
    ∴第(m+1)个月的利润为
    W′=.
    若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
    若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
    ∴m=1或11.
    考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.
    20、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
    【解析】
    (1)根据坐标轴上点的特点建立方程求解,即可得出结论;
    (2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
    (3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
    【详解】
    (1)针对于抛物线,
    令x=0,则,
    ∴,
    令y=0,则,
    解得,x=1或x=3,
    ∴,
    综上所述:,,;
    (2)由(1)知,,,
    ∵BM=FM,
    ∴,
    ∵,
    ∴直线AC的解析式为:,
    联立抛物线解析式得:,
    解得:或,
    ∴,
    如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
    ∴,
    解得:,
    ∴,
    过H作l∥AC,
    ∴直线l的解析式为,
    联立抛物线解析式,解得,
    ∴,
    即:在直线AC下方的抛物线上不存在点P,使;

    (3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
    设,,直线DE的解析式为,
    联立直线DE的解析式与抛物线解析式联立,得,
    ∴,,
    ∵DG⊥x轴,
    ∴DG∥OM,
    ∴,
    ∴,
    即,
    ∴,同理可得
    ∴,
    ∴,
    即,
    ∴,
    ∴直线DE的解析式为,
    ∴直线DE必经过一定点.

    【点睛】
    本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
    21、(1)证明见解析;(2);
    【解析】
    (1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;
    (2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到
    ∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.
    【详解】
    (1)证明:连接OD,

    ∵CD与圆O相切,
    ∴OD⊥CD,
    ∴∠CDO=90°,
    ∵BD∥OC,
    ∴∠AOC=∠OBD,∠COD=∠ODB,
    ∵OB=OD,
    ∴∠OBD=∠ODB,
    ∴∠AOC=∠COD,
    在△AOC和△DOC中,

    ∴△AOC≌△EOC(SAS),
    ∴∠CAO=∠CDO=90°,则AC与圆O相切;
    (2)∵AB=OC=4,OB=OD,
    ∴Rt△ODC与Rt△OAC是含30°的直角三角形,
    ∴∠DOC=∠COA=60°,
    ∴∠DOB=60°,
    ∴△BOD为等边三角形,
    图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积,
    =.
    【点睛】
    本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.
    22、(1);(2);(3).
    【解析】
    (1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
    (2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
    (3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
    【详解】
    解:(1)∵△AB′C′的边长变为了△ABC的n倍,
    ∴△ABC∽△AB′C′,
    ∴,
    故答案为:.
    (2)四边形是矩形,
    ∴.

    在中,,



    (3)若四边形 ABB′C′为正方形,
    则,,
    ∴,
    ∴,
    又∵在△ABC中,AB=,
    ∴,

    故答案为:.

    【点睛】
    本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
    23、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).
    【解析】
    (1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;
    (2)根据点B的坐标画出平面直角坐标系;
    (3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.
    【详解】
    (1)△A如图所示;
    (2)如图所示,A(0,1),C(﹣3,1);
    (3)△如图所示,(3,﹣5),(3,﹣1).

    24、(1)A'到BD的距离是1.2m;(2)A'到地面的距离是1m.
    【解析】
    (1)如图2,作A'F⊥BD,垂足为F.根据同角的余角相等证得∠2=∠3;再利用AAS证明△ACB≌△BFA',根据全等三角形的性质即可得A'F=BC,根据BC=BD﹣CD求得BC的长,即可得A'F的长,从而求得A'到BD的距离;(2)作A'H⊥DE,垂足为H,可证得A'H=FD,根据A'H=BD﹣BF求得A'H的长,从而求得A'到地面的距离.
    【详解】
    (1)如图2,作A'F⊥BD,垂足为F.

    ∵AC⊥BD,
    ∴∠ACB=∠A'FB=90°;
    在Rt△A'FB中,∠1+∠3=90°;
    又∵A'B⊥AB,∴∠1+∠2=90°,
    ∴∠2=∠3;
    在△ACB和△BFA'中,

    ∴△ACB≌△BFA'(AAS);
    ∴A'F=BC,
    ∵AC∥DE且CD⊥AC,AE⊥DE,
    ∴CD=AE=1.8;
    ∴BC=BD﹣CD=3﹣1.8=1.2,
    ∴A'F=1.2,即A'到BD的距离是1.2m.
    (2)由(1)知:△ACB≌△BFA',
    ∴BF=AC=2m,
    作A'H⊥DE,垂足为H.
    ∵A'F∥DE,
    ∴A'H=FD,
    ∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.
    【点睛】
    本题考查了全等三角形的判定与性质的应用,作出辅助线,证明△ACB≌△BFA'是解决问题的关键.

    相关试卷

    2023年广东省广州市从化区中考数学二模试卷(含解析):

    这是一份2023年广东省广州市从化区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省广州市从化区中考数学一模试卷(含解析):

    这是一份2023年广东省广州市从化区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析:

    这是一份广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列哪一个是假命题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map