|试卷下载
搜索
    上传资料 赚现金
    2022年河南省郑州市新密市市级名校中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2022年河南省郑州市新密市市级名校中考数学对点突破模拟试卷含解析01
    2022年河南省郑州市新密市市级名校中考数学对点突破模拟试卷含解析02
    2022年河南省郑州市新密市市级名校中考数学对点突破模拟试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河南省郑州市新密市市级名校中考数学对点突破模拟试卷含解析

    展开
    这是一份2022年河南省郑州市新密市市级名校中考数学对点突破模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,为无理数的是,方程的解为,已知抛物线c,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.2018的相反数是( )
    A. B.2018 C.-2018 D.
    2.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
    A.2:3 B.3:2 C.4:9 D.9:4
    3.两个一次函数,,它们在同一直角坐标系中的图象大致是( )
    A. B. C. D.
    4.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )

    A.1 B.1.5 C.2 D.2.5
    5.下列实数中,为无理数的是(  )
    A. B. C.﹣5 D.0.3156
    6.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

    A. B. C. D.
    7.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )
    A.矩形 B.菱形
    C.对角线互相垂直的四边形 D.对角线相等的四边形
    8.方程的解为(  )
    A.x=4 B.x=﹣3 C.x=6 D.此方程无解
    9.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是(  )
    A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
    C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
    10.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是(  )

    A.50和48 B.50和47 C.48和48 D.48和43
    11.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为(  )

    A. B. C. D.
    12.不等式组的解集在数轴上表示正确的是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为_____.

    14.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.

    15.计算:×(﹣2)=___________.
    16.计算的结果是_____
    17.计算:=____.
    18.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
    (1)求此抛物线的表达式;
    (2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
    20.(6分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
    21.(6分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
    请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
    22.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.

    请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
    23.(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
    求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
    24.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.

    25.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?

    26.(12分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
    (1)如图1,猜想∠QEP=   °;
    (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
    (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

    27.(12分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
    【详解】2018与-2018只有符号不同,
    由相反数的定义可得2018的相反数是-2018,
    故选C.
    【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
    2、C
    【解析】
    由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
    【详解】
    ∵△ABC与△DEF相似,相似比为2:3,
    ∴这两个三角形的面积比为4:1.
    故选C.
    【点睛】
    此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
    3、B
    【解析】
    根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.
    【详解】
    解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,
    所以,a、b异号,
    所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,
    B选项符合,
    D选项,a、b都经过第二、四象限,
    所以,两直线都与y轴负半轴相交,不符合.
    故选:B.
    【点睛】
    本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
    4、C
    【解析】
    连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
    【详解】

    连接AE,
    ∵AB=AD=AF,∠D=∠AFE=90°,
    由折叠的性质得:Rt△ABG≌Rt△AFG,
    在△AFE和△ADE中,
    ∵AE=AE,AD=AF,∠D=∠AFE,
    ∴Rt△AFE≌Rt△ADE,
    ∴EF=DE,
    设DE=FE=x,则CG=3,EC=6−x.
    在直角△ECG中,根据勾股定理,得:
    (6−x)2+9=(x+3)2,
    解得x=2.
    则DE=2.
    【点睛】
    熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
    5、B
    【解析】
    根据无理数的定义解答即可.
    【详解】
    选项A、是分数,是有理数;
    选项B、是无理数;
    选项C、﹣5为有理数;
    选项D、0.3156是有理数;
    故选B.
    【点睛】
    本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.
    6、D
    【解析】
    连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
    【详解】
    解:连接BD,BE,BO,EO,

    ∵B,E是半圆弧的三等分点,
    ∴∠EOA=∠EOB=∠BOD=60°,
    ∴∠BAD=∠EBA=30°,
    ∴BE∥AD,
    ∵ 的长为 ,

    解得:R=4,
    ∴AB=ADcos30°= ,
    ∴BC=AB=,
    ∴AC=BC=6,
    ∴S△ABC=×BC×AC=××6=,
    ∵△BOE和△ABE同底等高,
    ∴△BOE和△ABE面积相等,
    ∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
    故选:D.
    【点睛】
    本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
    7、C
    【解析】
    【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.
    【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
    ∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
    ∴EH∥FG,EH=FG,
    ∴四边形EFGH是平行四边形,
    假设AC=BD,
    ∵EH=AC,EF=BD,
    则EF=EH,
    ∴平行四边形EFGH是菱形,
    即只有具备AC=BD即可推出四边形是菱形,
    故选D.

    【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
    8、C
    【解析】
    先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.
    【详解】
    方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C
    【点睛】
    本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.
    9、B
    【解析】
    ∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为x=﹣1.
    ∴抛物线与y轴的交点为A(0,﹣3).
    则与A点以对称轴对称的点是B(2,﹣3).
    若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
    则B点平移后坐标应为(4,﹣3),
    因此将抛物线C向右平移4个单位.
    故选B.
    10、A
    【解析】
    由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.
    【详解】
    由折线统计图,得:42,43,47,48,49,50,50,
    7次测试成绩的众数为50,中位数为48,
    故选:A.
    【点睛】
    本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.
    11、D
    【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
    点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
    12、D
    【解析】
    试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
    考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(6054,2)
    【解析】
    分析:
    分析题意和图形可知,点B1、B3、B5、……在x轴上,点B2、B4、B6、……在第一象限内,由已知易得AB=,结合旋转的性质可得OA+AB1+B1C2=6,从而可得点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),即点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到的,由此即可推导得到点B2018的坐标.
    详解:
    ∵在△AOB中,∠AOB=90°,OA=,OB=2,
    ∴AB=,
    ∴由旋转的性质可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,
    ∴点B2的坐标为(6,2),
    同理可得点B4的坐标为(12,2),
    由此可得点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到,
    ∴点B2018相当于是由点B向右平移了:个单位得到的,
    ∴点B2018的坐标为(6054,2).
    故答案为:(6054,2).
    点睛:读懂题意,结合旋转的性质求出点B2和点B4的坐标,分析找到其中点B的坐标的变化规律,是正确解答本题的关键.
    14、 (2,3)
    【解析】
    作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
    【详解】
    如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,

    ∵点A、B的坐标分别为(-2,1)、(1,0),
    ∴AC=2,BC=2+1=3,
    ∵∠ABA′=90°,
    ∴ABC+∠A′BC′=90°,
    ∵∠BAC+∠ABC=90°,
    ∴∠BAC=∠A′BC′,
    ∵BA=BA′,∠ACB=∠BC′A′,
    ∴△ABC≌△BA′C′,
    ∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
    ∴点A′的坐标为(2,3).
    故答案为(2,3).
    【点睛】
    此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
    15、-1
    【解析】
    根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
    【详解】

    故答案为
    【点睛】
    本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.
    16、
    【解析】
    【分析】根据二次根式的运算法则进行计算即可求出答案.
    【详解】
    =
    =,
    故答案为.
    【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.
    17、1
    【解析】
    根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.
    【详解】
    解:∵12=21,
    ∴=1,
    故答案为:1.
    【点睛】
    本题考查了算术平方根的定义,先把化简是解题的关键.
    18、1
    【解析】
    由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.
    【详解】
    解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,
    ∵AB∥CD,
    ∴∠1+∠3=180°,
    ∴∠1=180°﹣70°=1°,
    故答案为1.


    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=-(x-3)2+5(2)5
    【解析】
    (1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
    (2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
    【详解】
    (1)设此抛物线的表达式为y=a(x-3)2+5,
    将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
    ∴此抛物线的表达式为
    (2)∵A(1,3),抛物线的对称轴为直线x=3,
    ∴B(5,3).
    令x=0,则
    ∴△ABC的面积
    【点睛】
    考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
    20、2+1
    【解析】
    根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.
    【详解】
    原式=-1+3+
    = -1+3+
    =2+1.
    【点睛】
    本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.
    21、(1)见解析;(2)图见解析;.
    【解析】
    (1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.
    (2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
    【详解】
    解:(1)△A1B1C1如图所示.
    (2)△A2B2C2如图所示.
    ∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.
    ∴S△A1B1C1:S△A2B2C2=()2=.

    22、(1)50人;(2)补图见解析;(3).
    【解析】
    分析:(1)根据化学学科人数及其所占百分比可得总人数;
    (2)根据各学科人数之和等于总人数求得历史的人数即可;
    (3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.
    详解:(1)该班学生总数为10÷20%=50人;
    (2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
    补全图形如下:

    (3)列表如下:

    化学
    生物
    政治
    历史
    地理
    化学

    生物、化学
    政治、化学
    历史、化学
    地理、化学
    生物
    化学、生物

    政治、生物
    历史、生物
    地理、生物
    政治
    化学、政治
    生物、政治

    历史、政治
    地理、政治
    历史
    化学、历史
    生物、历史
    政治、历史

    地理、历史
    地理
    化学、地理
    生物、地理
    政治、地理
    历史、地理

    由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
    所以该同学恰好选中化学、历史两科的概率为.
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    23、(1)见解析;(2)4.1
    【解析】
    试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;
    (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.
    试题解析:(1)∵四边形ABCD是正方形,
    ∴AB=AD,∠B=10°,AD∥BC,
    ∴∠AMB=∠EAF,
    又∵EF⊥AM,
    ∴∠AFE=10°,
    ∴∠B=∠AFE,
    ∴△ABM∽△EFA;
    (2)∵∠B=10°,AB=12,BM=5,
    ∴AM==13,AD=12,
    ∵F是AM的中点,
    ∴AF=AM=6.5,
    ∵△ABM∽△EFA,
    ∴,
    即,
    ∴AE=16.1,
    ∴DE=AE-AD=4.1.
    考点:1.相似三角形的判定与性质;2.正方形的性质.
    24、(1)见解析;(2)见解析;(3)AG=1.
    【解析】
    (1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.
    (2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.
    (3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.
    【详解】
    (1)证明:连结OC,如图,
    ∵C是劣弧AE的中点,
    ∴OC⊥AE,
    ∵CG∥AE,
    ∴CG⊥OC,
    ∴CG是⊙O的切线;
    (2)证明:连结AC、BC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠2+∠BCD=90°,
    而CD⊥AB,
    ∴∠B+∠BCD=90°,
    ∴∠B=∠2,
    ∵C是劣弧AE的中点,
    ∴,
    ∴∠1=∠B,
    ∴∠1=∠2,
    ∴AF=CF;
    (3)解:∵CG∥AE,
    ∴∠FAD=∠G,
    ∵sinG=0.6,
    ∴sin∠FAD==0.6,
    ∵∠CDA=90°,AF=CF=4,
    ∴DF=2.4,
    ∴AD=3.2,
    ∴CD=CF+DF=6.4,
    ∵AF∥CG,
    ∴,

    ∴DG=,
    ∴AG=DG﹣AD=1.

    【点睛】
    本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.
    25、(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.
    【解析】
    (1)观察图像得出路程和时间,即可解决问题.
    (2)利用待定系数法求一次函数解析式即可;
    (3)分两种情况讨论即可;
    (4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.
    【详解】
    (1)甲的速度为60米/分钟.
    (2)当20≤t ≤1时,设s=mt+n,由题意得:,解得:,所以s=10t-6000;
    (3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;
    ②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.
    综上所述:乙出发5分钟和1分钟时与甲在途中相遇.
    (4)设乙从B步行到C的速度是x米/分钟,由题意得:
    5400-100-(90-60) x=360
    解得:x=2.
    答:乙从景点B步行到景点C的速度是2米/分钟.
    【点睛】
    本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.
    26、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
    【解析】
    (1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
    (2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
    (3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
    【详解】
    解:(1)∠QEP=60°;
    证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
    ∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
    则在△CPA和△CQB中,

    ∴△CQB≌△CPA(SAS),
    ∴∠CQB=∠CPA,
    又因为△PEM和△CQM中,∠EMP=∠CMQ,
    ∴∠QEP=∠QCP=60°.
    故答案为60;

    (2)∠QEP=60°.以∠DAC是锐角为例.
    证明:如图2,∵△ABC是等边三角形,
    ∴AC=BC,∠ACB=60°,
    ∵线段CP绕点C顺时针旋转60°得到线段CQ,
    ∴CP=CQ,∠PCQ=60°,
    ∴∠ACB+∠BCP=∠BCP+∠PCQ,
    即∠ACP=∠BCQ,
    在△ACP和△BCQ中,

    ∴△ACP≌△BCQ(SAS),
    ∴∠APC=∠Q,
    ∵∠1=∠2,
    ∴∠QEP=∠PCQ=60°; 

    (3)连结CQ,作CH⊥AD于H,如图3,
    与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
    ∵∠DAC=135°,∠ACP=15°,
    ∴∠APC=30°,∠CAH=45°,
    ∴△ACH为等腰直角三角形,
    ∴AH=CH=AC=×4=,
    在Rt△PHC中,PH=CH=,
    ∴PA=PH−AH=-,
    ∴BQ=−.
    【点睛】
    本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.
    27、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.

    相关试卷

    河南省洛阳市伊川县市级名校2022年中考数学对点突破模拟试卷含解析: 这是一份河南省洛阳市伊川县市级名校2022年中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,tan60°的值是等内容,欢迎下载使用。

    2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析: 这是一份2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,定义运算等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map