![2022年河南省周口川汇区重点中学中考数学仿真试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13069343/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年河南省周口川汇区重点中学中考数学仿真试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13069343/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年河南省周口川汇区重点中学中考数学仿真试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13069343/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年河南省周口川汇区重点中学中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为( )
A. B. C. D.
2.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( )
A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×109
3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( )
A.三亚﹣﹣永兴岛 B.永兴岛﹣﹣黄岩岛
C.黄岩岛﹣﹣弹丸礁 D.渚碧礁﹣﹣曾母暗山
4.下列四个多项式,能因式分解的是( )
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
5.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
6.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
A.3或6 B.1或6 C.1或3 D.4或6
7.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:
下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
A.① B.② C.①③ D.②③
8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40°的N处,则N处与灯塔P的 距离为
A.40海里 B.60海里 C.70海里 D.80海里
9.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
10.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( )
A. B. C. D.不能确定
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.
12.函数y=的自变量x的取值范围是_____.
13.如图,若点 的坐标为 ,则 =________.
14.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:
则,y2=_____,第n次的运算结果yn=_____.(用含字母x和n的代数式表示).
15.分解因式:mx2﹣6mx+9m=_____.
16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_____km.
三、解答题(共8题,共72分)
17.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
18.(8分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.
19.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
销售单价x(元/kg)
120
130
…
180
每天销量y(kg)
100
95
…
70
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
20.(8分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).
小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:
建立函数模型:
设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):
根据函数的表达式,得到了x与y的几组值,如下表:
x
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
y
17
10
8.3
8.2
8.7
9.3
10.8
11.6
描点、画函数图象:
如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
观察分析、得出结论:
根据以上信息可得,当x=________时,y有最小值.
由此,小强确定篱笆长至少为________米.
21.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接GB,EF,求证:GB∥EF;
(3)若AE=1,EB=2,求DG的长.
22.(10分)已知,求代数式的值.
23.(12分)如图,在四边形中,为的中点,于点,,,,求的度数.
24.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度数;
(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´
【详解】
先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=
【点睛】
熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.
2、A
【解析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
39000000000=3.9×1.
故选A.
【点睛】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
3、A
【解析】
根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.
【详解】
由图可得,两个点之间距离最短的是三亚-永兴岛.
故答案选A.
【点睛】
本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.
4、D
【解析】
试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
5、C
【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
共用去:(2a+3b)元.
故选C.
【点睛】
本题主要考查列代数式,总价=单价乘数量.
6、B
【解析】
分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
详解:如图,
当h<2时,有-(2-h)2=-1,
解得:h1=1,h2=3(舍去);
当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
当h>5时,有-(5-h)2=-1,
解得:h3=4(舍去),h4=1.
综上所述:h的值为1或1.
故选B.
点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
7、B
【解析】
根据图形和各个小题的说法可以判断是否正确,从而解答本题
【详解】
当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
故选:B.
【点睛】
此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
8、D
【解析】
分析:依题意,知MN=40海里/小时×2小时=80海里,
∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,
∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.
∴NP=NM=80海里.故选D.
9、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
10、B
【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.
【详解】
∵AB=CD,
∴AC+BC=BC+BD,
即AC=BD,
又∵BC=2AC,
∴BC=2BD,
∴CD=3BD=3AC.
故选B.
【点睛】
本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(﹣,1)
【解析】
如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCD是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标(﹣,1),
故答案为(,1).
点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
12、x≥﹣且x≠1
【解析】
分析:根据被开方数大于等于0,分母不等于0列式求解即可.
详解:根据题意得2x+1≥0,x-1≠0,
解得x≥-且x≠1.
故答案为x≥-且x≠1.
点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
13、
【解析】
根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.
【详解】
如图,由勾股定理,得:OA==1.sin∠1=,故答案为.
14、
【解析】
根据题目中的程序可以分别计算出y2和yn,从而可以解答本题.
【详解】
∵y1=,∴y2===,y3=,……
yn=.
故答案为:.
【点睛】
本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn.
15、m(x﹣3)1.
【解析】
先把提出来,然后对括号里面的多项式用公式法分解即可。
【详解】
【点睛】
解题的关键是熟练掌握因式分解的方法。
16、1.
【解析】
根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.
【详解】
解:设A港与B港相距xkm,
根据题意得:
,
解得:x=1,
则A港与B港相距1km.
故答案为:1.
【点睛】
此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.
三、解答题(共8题,共72分)
17、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
18、(1)证明见解析;(2)AB、AD的长分别为2和1.
【解析】
(1)证Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.
【详解】
(1)证明:∵AB⊥OM于B,DE⊥ON于E,
∴.
在Rt△ABO与Rt△DEA中,
∵∴Rt△ABO≌Rt△DEA(HL).
∴∠AOB=∠DAE.∴AD∥BC.
又∵AB⊥OM,DC⊥OM,∴AB∥DC.
∴四边形ABCD是平行四边形.
∵,∴四边形ABCD是矩形;
(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.
设AD=x,则OA=x,AE=OE-OA=9-x.
在Rt△DEA中,由得:
,解得.
∴AD=1.即AB、AD的长分别为2和1.
【点睛】
矩形的判定和性质;掌握判断定证三角形全等是关键.
19、 (1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.
【解析】
试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;
(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.
试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;
(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=,∵a=<0,∴当x<200时,y随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w==7000(元).
答:当销售单价为180元时,销售利润最大,最大利润是7000元.
20、见解析
【解析】
根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x═()2+4可得当x=2,y有最小值,则可求篱笆长.
【详解】
根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x
∵x()2+()2=()2+4,∴x4,∴2x1,∴当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米.
故答案为:y=2x,2,1.
【点睛】
本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.
21、(1)详见解析;(2)详见解析;(3).
【解析】
(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
(1)证明:连接BD,
在Rt△ABC中,∠ABC=90°,AB=BC,
∴∠A=∠C=45°,
∵AB为圆O的直径,
∴∠ADB=90°,即BD⊥AC,
∴AD=DC=BD=AC,∠CBD=∠C=45°,
∴∠A=∠FBD,
∵DF⊥DG,
∴∠FDG=90°,
∴∠FDB+∠BDG=90°,
∵∠EDA+∠BDG=90°,
∴∠EDA=∠FDB,
在△AED和△BFD中,
∠A=∠FBD,AD=BD,∠EDA=∠FDB,
∴△AED≌△BFD(ASA),
∴AE=BF;
(2)证明:连接EF,BG,
∵△AED≌△BFD,
∴DE=DF,
∵∠EDF=90°,
∴△EDF是等腰直角三角形,
∴∠DEF=45°,
∵∠G=∠A=45°,
∴∠G=∠DEF,
∴GB∥EF;
(3)∵AE=BF,AE=1,
∴BF=1,
在Rt△EBF中,∠EBF=90°,
∴根据勾股定理得:EF2=EB2+BF2,
∵EB=2,BF=1,
∴EF=,
∵△DEF为等腰直角三角形,∠EDF=90°,
∴cos∠DEF=,
∵EF=,
∴DE=×,
∵∠G=∠A,∠GEB=∠AED,
∴△GEB∽△AED,
∴,即GE•ED=AE•EB,
∴•GE=2,即GE=,
则GD=GE+ED=.
22、12
【解析】
解:∵,∴.
∴.
将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.
23、
【解析】
连接,根据线段垂直平分线的性质得到,根据等腰三角形的性质、三角形内角和定理计算即可.
【详解】
连接,
∵为的中点,于点,
∴,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∴.
【点睛】
本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
24、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
【解析】
(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.
(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.
【详解】
(1)∵OA=OC,∠OAC=60°,
∴△OAC是等边三角形,
故∠AOC=60°.
(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,
而OC是⊙O的半径,
故PC与⊙O的位置关系是相切.
(3)如图;有三种情况:
①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣2);
劣弧MA的长为:;
②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣2);
劣弧MA的长为:;
③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,2);
优弧MA的长为:;
④当C、M重合时,C点符合M点的要求,此时M4(2,2);
优弧MA的长为:;
综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
【点睛】
本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.
2024年河南省周口市川汇区中考数学二检试卷(含解析): 这是一份2024年河南省周口市川汇区中考数学二检试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年河南省周口市川汇区中考数学一模试卷(含解析): 这是一份2023年河南省周口市川汇区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省周口川汇区重点中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份河南省周口川汇区重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了平面直角坐标系中的点P等内容,欢迎下载使用。