开学活动
搜索
    上传资料 赚现金

    2022年湖北省武汉市市级名校中考数学仿真试卷含解析

    2022年湖北省武汉市市级名校中考数学仿真试卷含解析第1页
    2022年湖北省武汉市市级名校中考数学仿真试卷含解析第2页
    2022年湖北省武汉市市级名校中考数学仿真试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省武汉市市级名校中考数学仿真试卷含解析

    展开

    这是一份2022年湖北省武汉市市级名校中考数学仿真试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,计算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    2.如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )

    A. B. C.5cosα D.
    3.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是(  )

    A.0个 B.1个或2个
    C.0个、1个或2个 D.只有1个
    4.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是(  )

    A.三亚﹣﹣永兴岛 B.永兴岛﹣﹣黄岩岛
    C.黄岩岛﹣﹣弹丸礁 D.渚碧礁﹣﹣曾母暗山
    5.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )

    A.的长 B.的长 C.的长 D.的长
    6.计算(﹣)﹣1的结果是(  )
    A.﹣ B. C.2 D.﹣2
    7.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
    A.若AB=CD,则四边形ABCD一定是等腰梯形;
    B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
    C.若,则四边形ABCD一定是矩形;
    D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
    8.实数a,b在数轴上的位置如图所示,以下说法正确的是( )

    A.a+b=0 B.b<a C.ab>0 D.|b|<|a|
    9.如图是某个几何体的三视图,该几何体是()

    A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
    10.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
    A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为________.
    12.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.

    13.若不等式组的解集为,则________.
    14.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.

    15.分式方程的解是 .
    16.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.
    三、解答题(共8题,共72分)
    17.(8分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.

    种产品
    种产品
    成本(万元件)
    2
    5
    利润(万元件)
    1
    3
    (1)若工厂计划获利14万元,问,两种产品应分别生产多少件?
    (2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?
    18.(8分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为2.
    求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.
    19.(8分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.
    请填空完成下列证明.
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则 CD=AB=AD (   ).
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形.
    ∴∠A=   °.
    ∴∠B=90°﹣∠A=30°.

    20.(8分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
    (1)概念理解:
    如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
    (1)问题探究:
    如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
    (3)应用拓展:
    如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.

    21.(8分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.

    22.(10分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
    (1)求日均销售量p(桶)与销售单价x(元)的函数关系;
    (2)若该经营部希望日均获利1350元,那么销售单价是多少?

    23.(12分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).
    (1)求证:方程有两个不相等的实数根;
    (2)若方程的两个实数根都是整数,求k的值.
    24.解方程:x2-4x-5=0



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
    【详解】
    ∵反比例函数y=中,k=1>0,
    ∴此函数图象的两个分支在一、三象限,
    ∵x1<x2<0<x1,
    ∴A、B在第三象限,点C在第一象限,
    ∴y1<0,y2<0,y1>0,
    ∵在第三象限y随x的增大而减小,
    ∴y1>y2,
    ∴y2<y1<y1.
    故选D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
    2、D
    【解析】
    利用所给的角的余弦值求解即可.
    【详解】
    ∵BC=5米,∠CBA=∠α,∴AB==.
    故选D.

    【点睛】
    本题主要考查学生对坡度、坡角的理解及运用.
    3、C
    【解析】
    根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
    【详解】
    ∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
    ∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
    当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
    当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
    故选C.
    【点睛】
    考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
    4、A
    【解析】
    根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.
    【详解】
    由图可得,两个点之间距离最短的是三亚-永兴岛.
    故答案选A.
    【点睛】
    本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.
    5、B
    【解析】
    【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
    【解答】用求根公式求得:



    AD的长就是方程的正根.
    故选B.
    【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
    6、D
    【解析】
    根据负整数指数幂与正整数指数幂互为倒数,可得答案.
    【详解】
    解: ,
    故选D.
    【点睛】
    本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.
    7、C
    【解析】
    A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
    B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
    C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
    D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
    故选C.
    8、D
    【解析】
    根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.
    【详解】
    A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;
    B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;
    C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;
    D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.
    ∴ 选D.
    9、A
    【解析】
    试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.
    考点:由三视图判定几何体.
    10、C
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-10
    【解析】
    根据根与系数的关系得出-2+4=-m,-2×4=n,求出即可.
    【详解】
    ∵关于x的一元二次方程的两个实数根分别为x =-2,x =4,
    ∴−2+4=−m,−2×4=n,
    解得:m=−2,n=−8,
    ∴m+n=−10,
    故答案为:-10
    【点睛】
    此题考查根与系数的关系,掌握运算法则是解题关键
    12、(-2,-2)
    【解析】
    先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
    【详解】
    “卒”的坐标为(﹣2,﹣2),

    故答案是:(﹣2,﹣2).
    【点睛】
    考查了坐标确定位置,关键是正确确定原点位置.
    13、-1
    【解析】
    分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.
    详解:由不等式得x>a+2,x<b,
    ∵-1<x<1,
    ∴a+2=-1,b=1
    ∴a=-3,b=2,
    ∴(a+b)2009=(-1)2009=-1.
    故答案为-1.
    点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
    14、
    【解析】
    先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理 即可出圆锥的高.
    【详解】
    圆心角为120°,半径为6cm的扇形的弧长为4cm
    ∴圆锥的底面半径为2,
    故圆锥的高为=4cm
    【点睛】
    此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.
    15、x=﹣1.
    【解析】
    试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    试题解析:去分母得:x=2x﹣1+2,
    解得:x=﹣1,
    经检验x=﹣1是分式方程的解.
    考点:解分式方程.
    16、1.016×105
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,
    【详解】
    解:101 600=1.016×105
    故答案为:1.016×105
    【点睛】
    本题考查科学计数法,掌握概念正确表示是本题的解题关键.

    三、解答题(共8题,共72分)
    17、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
    【解析】
    (1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;
    (2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.
    【详解】
    解:(1)设生产种产品件,则生产种产品件,
    依题意得:,
    解得: ,
    则,
    答:生产产品8件,生产产品2件;
    (2)设生产产品件,则生产产品件

    解得:.
    因为为正整数,故或3;
    答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
    【点睛】
    此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
    18、(2)(2)7或2.
    【解析】
    试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;
    (2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.
    试题解析:(2)∵△AOM的面积为2,
    ∴|k|=2,
    而k>0,
    ∴k=6,
    ∴反比例函数解析式为y=;
    (2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,
    把x=2代入y=得y=6,
    ∴M点坐标为(2,6),
    ∴AB=AM=6,
    ∴t=2+6=7;
    当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,
    则AB=BC=t-2,
    ∴C点坐标为(t,t-2),
    ∴t(t-2)=6,
    整理为t2-t-6=0,解得t2=2,t2=-2(舍去),
    ∴t=2,
    ∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2.
    考点:反比例函数综合题.
    19、直角三角形斜边上的中线等于斜边的一半;1.
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.
    【详解】
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形,
    ∴∠A=1°,
    ∴∠B=90°﹣∠A=30°.
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.
    20、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
    【解析】
    (1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
    (1)点B是的重心,得到设 则
    根据勾股定理可得即可求出它们的比值.
    (3)分两种情况进行讨论:①当时和②当时.
    【详解】
    (1)△ABC是“等高底”三角形;
    理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,

    ∵∠ACB=30°,AC=6,

    ∴AD=BC=3,
    即△ABC是“等高底”三角形;
    (1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,


    ∵△ABC关于BC所在直线的对称图形是 ,
    ∴∠ADC=90°,
    ∵点B是的重心,

    设 则
    由勾股定理得

    (3)①当时,
    Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,

    ∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.

    ∴BE=1,即EC=4,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
    ∴∠DCF=45°,

    ∵l1∥l1,

    ∴ 即


    Ⅱ.如图4,此时△ABC等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到,
    ∴是等腰直角三角形,

    ②当时,
    Ⅰ.如图5,此时△ABC是等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,


    Ⅱ.如图6,作于E,则



    ∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
    ∴∥l1,即直线与l1无交点,
    综上所述,CD的值为
    【点睛】
    属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.
    21、【小题1】 见解析
    【小题2】 见解析
    【小题3】
    【解析】
    证明:(1)连接OF
    ∴FH切·O于点F
    ∴OF⊥FH ………………………… 1分
    ∵BC | | FH
    ∴OF⊥BC ………………………… 2分
    ∴BF="CF" ………………………… 3分
    ∴∠BAF=∠CAF
    即AF平分∠BAC…………………4分
    (2) ∵∠CAF=∠CBF
    又∠CAF=∠BAF
    ∴∠CBF=∠BAF ………………………… 6分
    ∵BD平分∠ABC
    ∴∠ABD=∠CBD
    ∴∠BAF+∠ABD=∠CBF+∠CBD
    即∠FBD=∠FDB………………………… 7分
    ∴BF="DF" ………………………… 8分
    (3) ∵∠BFE=∠AFB ∠FBE=∠FAB
    ∴ΔBEF∽ΔABF………………………… 9分
    ∴即BF2=EF·AF …………………… 10分
    ∵EF=4 DE=3 ∴BF="DF" =4+3=7
    AF=AD+7
    即4(AD+7)=49 解得AD=
    22、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.
    【解析】
    (1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;
    【详解】
    (1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,
    根据题意得,
    解得k=﹣50,b=850,
    所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;
    (2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,
    解得x1=9,x2=13(不合题意,舍去),
    ∵销售单价不得高于12元/桶,也不得低于7元/桶,
    ∴x=13不合题意,
    答:若该经营部希望日均获利1350元,那么销售单价是9元.
    【点睛】
    本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.
    23、(3)证明见解析(3)3或﹣3
    【解析】
    (3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.
    【详解】
    证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.
    ∵k为整数,
    ∴(3k﹣3)3>2,即△>2.
    ∴方程有两个不相等的实数根.
    (3)解:∵方程kx3﹣(4k+3)x+3k+3=2为一元二次方程,
    ∴k≠2.
    ∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,
    ∴x3=3,.
    ∵方程的两个实数根都是整数,且k为整数,
    ∴k=3或﹣3.
    【点睛】
    本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.
    24、x1 ="-1," x2 =5
    【解析】
    根据十字相乘法因式分解解方程即可.

    相关试卷

    广西市级名校2023年中考数学仿真试卷含解析:

    这是一份广西市级名校2023年中考数学仿真试卷含解析,共15页。

    湖北省黄冈市浠水县市级名校2021-2022学年中考数学仿真试卷含解析:

    这是一份湖北省黄冈市浠水县市级名校2021-2022学年中考数学仿真试卷含解析,共22页。试卷主要包含了﹣2018的相反数是,下列各式计算正确的是等内容,欢迎下载使用。

    湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析:

    这是一份湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map