2022年黑龙江省鸡东县重点达标名校中考五模数学试题含解析
展开
这是一份2022年黑龙江省鸡东县重点达标名校中考五模数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,若分式有意义,则a的取值范围是,将一副三角板等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )
A. B.
C. D.
2.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于( )
A.30°10′ B.29°10′ C.29°50′ D.50°10′
3.下列四个几何体中,主视图与左视图相同的几何体有( )
A.1个 B.2个 C.3个 D.4个
4.若分式有意义,则a的取值范围是( )
A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数
5.如图,在中,分别在边边上,已知,则的值为( )
A. B. C. D.
6.下列关于事件发生可能性的表述,正确的是( )
A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
7.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
8.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于( )
A.75° B.90° C.105° D.115°
9.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4 B..5 C.6 D.8
10.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:
文化程度
高中
大专
本科
硕士
博士
人数
9
17
20
9
5
关于这组文化程度的人数数据,以下说法正确的是:( )
A.众数是20 B.中位数是17 C.平均数是12 D.方差是26
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.
12.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.
13.若分式方程有增根,则m的值为______.
14.π﹣3的绝对值是_____.
15.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)
16.计算:的结果为_____.
三、解答题(共8题,共72分)
17.(8分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
18.(8分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
19.(8分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣ |+4sin60°;
20.(8分)计算:2-1+20160-3tan30°+|-|
21.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
22.(10分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节“活动计划书
书本类别
科普类
文学类
进价(单位:元)
18
12
备注
(1)用不超过16800元购进两类图书共1000本;
(2)科普类图书不少于600本;
…
(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;
(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
23.(12分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
24.如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
(1)求a,b的值及反比例函数的解析式;
(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;
(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:
几何体的左视图是:
.
故选D.
2、C
【解析】
根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.
【详解】
∵AB∥CD,
∴∠D=∠A=50°10′,
∵∠COD=100°,
∴∠C=180°-∠D-∠COD=29°50′.
故选C.
【点睛】
本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.
3、D
【解析】
解:①正方体的主视图与左视图都是正方形;
②球的主视图与左视图都是圆;
③圆锥主视图与左视图都是三角形;
④圆柱的主视图和左视图都是长方形;
故选D.
4、A
【解析】
分析:根据分母不为零,可得答案
详解:由题意,得
,解得
故选A.
点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.
5、B
【解析】
根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
【详解】
解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
6、C
【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
【详解】
解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
故选:C.
【点睛】
考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
7、D
【解析】
依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
【详解】
解:∵∠ACD是△ABC的外角,
∴∠ACD=∠BAC+∠B,
∵CE平分∠DCA,
∴∠ACD=2∠ACE,
∴2∠ACE=∠BAC+∠B,故A选项正确;
∵EF∥BC,CF平分∠BCA,
∴∠BCF=∠CFE,∠BCF=∠ACF,
∴∠ACF=∠EFC,
∴OF=OC,
同理可得OE=OC,
∴EF=2OC,故B选项正确;
∵CF平分∠BCA,CE平分∠ACD,
∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
∵O不一定是AC的中点,
∴四边形AECF不一定是平行四边形,
∴四边形AFCE不一定是矩形,故D选项错误,
故选D.
【点睛】
本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
8、C
【解析】
分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
详解:∵AB∥EF,
∴∠BDE=∠E=45°,
又∵∠A=30°,
∴∠B=60°,
∴∠1=∠BDE+∠B=45°+60°=105°,
故选C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
9、C
【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
,
即,
解得EF=6,
故选C.
10、C
【解析】
根据众数、中位数、平均数以及方差的概念求解.
【详解】
A、这组数据中9出现的次数最多,众数为9,故本选项错误;
B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;
C、平均数==12,故本选项正确;
D、方差= [(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= ,故本选项错误.
故选C.
【点睛】
本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题解析:连接AE,
在Rt三角形ADE中,AE=4,AD=2,
∴∠DEA=30°,
∵AB∥CD,
∴∠EAB=∠DEA=30°,
∴的长度为:=.
考点:弧长的计算.
12、
【解析】
根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.
【详解】
解: ∵∠AED=∠ABD (同弧所对的圆周角相等),
∴tan∠AED=tanB=.
故答案为:.
【点睛】
本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.
13、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘(x-1),得
x-1(x-1)=-m
∵原方程增根为x=1,
∴把x=1代入整式方程,得m=-1,
故答案为:-1.
【点睛】
本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
14、π﹣1.
【解析】
根据绝对值的性质即可解答.
【详解】
π﹣1的绝对值是π﹣1.
故答案为π﹣1.
【点睛】
本题考查了绝对值的性质,熟练运用绝对值的性质是解决问题的关键.
15、5
【解析】
如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
【详解】
如图,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案为:5.
【点睛】
本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
16、
【解析】
分析:根据二次根式的性质先化简,再合并同类二次根式即可.
详解:原式=3-5=﹣2.
点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,
又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
18、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
【解析】
(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
【详解】
证明:如图①
是的中线,
(或证明四边形ABDE是平行四边形,从而得到)
【探究】
四边形ABPE是平行四边形.
方法一:如图②,
证明:过点D作交直线于点,
∴四边形是平行四边形,
∵由问题结论可得
∴四边形是平行四边形.
方法二:如图③,
证明:延长BP交直线CF于点N,
∵是的中线,
∴四边形是平行四边形.
【应用】
如图④,延长BP交CF于H.
由上面可知,四边形是平行四边形,
∴四边形APHE是平行四边形,
,
【点睛】
此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
19、1.
【解析】
分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
详解:原式=1+4-(2-2)+4×,
=1+4-2+2+2,
=1.
点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
20、
【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;
【详解】
原式=
=
=.
【点睛】
此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.
21、(1)证明见解析;(2)CE=1.
【解析】
(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.
【详解】
(1)证明:如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵ BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵ ∠ACB=90° ,
∴∠OEA=∠ACB=90°,
∴ AC是⊙O的切线 .
(2)解:过O作OH⊥BF,
∴BH=BF=3,四边形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.
【点睛】
本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.
22、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
【解析】
(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
【详解】
解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
根据题意可得,
化简得:540-10x=360,
解得:x=18,
经检验:x=18是原分式方程的解,且符合题意,
则A类图书的标价为:1.5x=1.5×18=27(元),
答:A类图书的标价为27元,B类图书的标价为18元;
(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
由题意得,,
解得:600≤t≤800,
则总利润w=(27-a-18)t+(18-12)(1000-t)
=(9-a)t+6(1000-t)
=6000+(3-a)t,
故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
【点睛】
本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
23、 (1) 每次下调10% (2) 第一种方案更优惠.
【解析】
(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.
【详解】
解:(1)设平均每次下调的百分率为x,根据题意得
5000×(1-x)2=4050
解得x=10%或x=1.9(舍去)
答:平均每次下调10%.
(2)9.8折=98%,
100×4050×98%=396900(元)
100×4050-100×1.5×12×2=401400(元),
396900<401400,所以第一种方案更优惠.
答:第一种方案更优惠.
【点睛】
本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.
24、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
【解析】
(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;
(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
【详解】
(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
∴a=-1,b=-1,
∴A(-1,3),B(3,-1),
∵点A(-1,3)在反比例函数y=上,
∴k=-1×3=-3,
∴反比例函数解析式为y=;
(2)设点P(n,-n+2),
∵A(-1,3),
∴C(-1,0),
∵B(3,-1),
∴D(3,0),
∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,
∵S△ACP=S△BDP,
∴×3×|n+1|=×1×|3−n|,
∴n=0或n=−3,
∴P(0,2)或(−3,5);
(3)设M(m,0)(m>0),
∵A(−1,3),B(3,−1),
∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,
∵△MAB是等腰三角形,
∴①当MA=MB时,
∴(m+1)2+9=(m−3)2+1,
∴m=0,(舍)
②当MA=AB时,
∴(m+1)2+9=32,
∴m=−1+或m=−1−(舍),
∴M(−1+,0)
③当MB=AB时,(m−3)2+1=32,
∴m=3+或m=3−(舍),
∴M(3+,0)
即:满足条件的M(−1+,0)或(3+,0).
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.
相关试卷
这是一份黑龙江省鸡东县重点达标名校2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了答题时请按要求用笔,下列命题是真命题的是等内容,欢迎下载使用。
这是一份黑龙江省鸡东县重点达标名校2021-2022学年中考适应性考试数学试题含解析,共20页。试卷主要包含了如图所示的几何体的主视图是,一次函数的图象不经过等内容,欢迎下载使用。
这是一份2022年黑龙江省伊春市重点达标名校中考数学五模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若=1,则符合条件的m有,-4的相反数是,平面直角坐标系中,若点A等内容,欢迎下载使用。