2022年湖北省鄂州市区重点中学中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.在实数|﹣3|,﹣2,0,π中,最小的数是( )
A.|﹣3| B.﹣2 C.0 D.π
2.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G 到BE的距离是( )
A. B. C. D.
3.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于( )
A.40° B.70° C.60° D.50°
4. “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为
A.675×102 B.67.5×102 C.6.75×104 D.6.75×105
5.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A.(0,) B.(0,) C.(0,2) D.(0,)
6.已知是二元一次方程组的解,则的算术平方根为( )
A.±2 B. C.2 D.4
7.﹣2018的绝对值是( )
A.±2018 B.﹣2018 C.﹣ D.2018
8.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是
A.① B.④ C.②或④ D.①或③
9.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
A. B. C. D.
10.如图是由四个相同的小正方体堆成的物体,它的正视图是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果关于x的方程(m为常数)有两个相等实数根,那么m=______.
12.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率m/n
0.58
0.64
0.58
0.59
0.605
0.601
13.反比例函数y=的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(–3,y1),B(–1,y2),C(2,y3)都在该双曲线上,则y1、y2、y3的大小关系为__________.(用“<”连接)
14.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:
x
…
-5
-4
-3
-2
-1
…
y
…
3
-2
-5
-6
-5
…
则关于x的一元二次方程ax2+bx+c=-2的根是______.
15.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.
16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.
三、解答题(共8题,共72分)
17.(8分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。
18.(8分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.
(1)判断直线l与圆O的关系,并说明理由;
(2)若的平分线BF交AD于点F,求证:;
(3)在(2)的条件下,若,,求AF的长.
19.(8分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
(1)初三•二班跑得最快的是第 接力棒的运动员;
(2)发令后经过多长时间两班运动员第一次并列?
20.(8分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
(1)求抛物线的解析式及点D的坐标;
(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.
21.(8分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的函数表达式;
(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
22.(10分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.
23.(12分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
(1)求证:∠CBE=∠F;
(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.
24.如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
直接利用利用绝对值的性质化简,进而比较大小得出答案.
【详解】
在实数|-3|,-1,0,π中,
|-3|=3,则-1<0<|-3|<π,
故最小的数是:-1.
故选B.
【点睛】
此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.
2、A
【解析】
根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.
【详解】
连接GB、GE,
由已知可知∠BAE=45°.
又∵GE为正方形AEFG的对角线,
∴∠AEG=45°.
∴AB∥GE.
∵AE=4,AB与GE间的距离相等,
∴GE=8,S△BEG=S△AEG=SAEFG=1.
过点B作BH⊥AE于点H,
∵AB=2,
∴BH=AH=.
∴HE=3.
∴BE=2.
设点G到BE的距离为h.
∴S△BEG=•BE•h=×2×h=1.
∴h=.
即点G到BE的距离为.
故选A.
【点睛】
本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.
3、D
【解析】
根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.
【详解】
∵DE垂直平分AC交AB于E,
∴AE=CE,
∴∠A=∠ACE,
∵∠A=30°,
∴∠ACE=30°,
∵∠ACB=80°,
∴∠BCE=∠ACB-∠ACE=50°,
故选D.
【点睛】
本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
4、C
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
67500一共5位,从而67500=6.75×104,
故选C.
5、B
【解析】
解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).
∵D是OB的中点,∴D(﹣2,0).
设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为.当x=0时,y=,∴E(0,).故选B.
6、C
【解析】
二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.
【分析】∵是二元一次方程组的解,∴,解得.
∴.即的算术平方根为1.故选C.
7、D
【解析】
分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
详解:﹣2018的绝对值是2018,即.
故选D.
点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
8、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
故选D.
9、B.
【解析】
试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
考点:由实际问题抽象出一元二次方程.
10、A
【解析】
【分析】根据正视图是从物体的正面看得到的图形即可得.
【详解】从正面看可得从左往右2列正方形的个数依次为2,1,
如图所示:
故选A.
【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
析:本题需先根据已知条件列出关于m的等式,即可求出m的值.
解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根
∴△=b2-4ac=(-2)2-4×1?m=0
4-4m=0
m=1
故答案为1
12、0.1
【解析】
根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.
【详解】
解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,
则P白球=0.1.
故答案为0.1.
【点睛】
本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
13、y2<y1<y1.
【解析】
先根据反比例函数的增减性判断出2-m的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可.
【详解】
∵反比例函数y=的图象是双曲线,在每一个象限内,y随x的增大而减小,
∴2−m>0,∴此函数的图象在一、三象限,∵−1<−1<0,∴0>y1>y2,∵2>0,∴y1>0,
∴y2
本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.
14、x1=-4,x1=2
【解析】
解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.
点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.
15、72°
【解析】
首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.
【详解】
∵五边形ABCDE为正五边形,
∴AB=BC=AE,∠ABC=∠BAE=108°,
∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,
∴∠AFE=∠BAC+∠ABE=72°,
故答案为72°.
【点睛】
本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键
16、3
【解析】
试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.
考点:3.二次函数的应用;3.销售问题.
三、解答题(共8题,共72分)
17、(1); (2);(3)
【解析】
(1)联立两直线解析式,求出交点P坐标即可;
(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
【详解】
解:(1)联立得:,解得:;
∴P的坐标为;
(2)分两种情况考虑:
当时,由F坐标为(a,0),得到OF=a,
把E横坐标为a,代入得:即
此时
当时,重合的面积就是梯形面积,
F点的横坐标为a,所以E点纵坐标为
M点横坐标为:-3a+12,
∴
所以;
(3)令中的y=0,解得:x=4,则A的坐标为(4,0)
则AP= ,则PM=2
又∵OP=
∴点P向左平移3个单位在向下平移可以得到M1
点P向右平移3个单位在向上平移可以得到M2
∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
A向右平移3个单位在向上平移可以得到 Q1(7,)
所以,存在Q点,且坐标是
【点睛】
本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
18、(1)直线l与相切,见解析;(2)见解析;(3)AF=.
【解析】
连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;
先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;
先求得BE的长,然后证明∽,由相似三角形的性质可求得AE的长,于是可得到AF的长.
【详解】
直线l与相切.
理由:如图1所示:连接OE.
平分,
.
,
.
,
.
直线l与相切.
平分,
.
又,
.
又,
.
.
由得.
,,
∽.
,即,解得;.
.
故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.
【点睛】
本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键.
19、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.
【解析】
(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;
(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.
【详解】
(1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;
(2)设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:
解得:k=,b=﹣,
即y1=x﹣,
二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:
解得:k′=,b′=,
即y2=x+
联立方程组,
解得:,
所以发令后第37秒两班运动员在275米处第一次并列.
【点睛】
本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.
20、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
【解析】
分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
详解:
(1)∵OB=OC=1,
∴B(1,0),C(0,-1).
∴,
解得,
∴抛物线的解析式为.
∵=,
∴点D的坐标为(2,-8).
(2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
∵∠FAB=∠EDB,
∴tan∠FAG=tan∠BDE,
即,
解得,(舍去).
当x=7时,y=,
∴点F的坐标为(7,).
当点F在x轴下方时,设同理求得点F的坐标为(5,).
综上所述,点F的坐标为(7,)或(5,).
(3)∵点P在x轴上,
∴根据菱形的对称性可知点P的坐标为(2,0).
如图,当MN在x轴上方时,设T为菱形对角线的交点.
∵PQ=MN,
∴MT=2PT.
设TP=n,则MT=2n. ∴M(2+2n,n).
∵点M在抛物线上,
∴,即.
解得,(舍去).
∴MN=2MT=4n=.
当MN在x轴下方时,设TP=n,得M(2+2n,-n).
∵点M在抛物线上,
∴,
即.
解得,(舍去).
∴MN=2MT=4n=.
综上所述,菱形对角线MN的长为或.
点睛:
1.求二次函数的解析式
(1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
21、 (1) B(-1.2);(2) y=;(3)见解析.
【解析】
(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;
(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;
(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.
【详解】
(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,
∵△AOB为等腰三角形,
∴AO=BO,
∵∠AOB=90°,
∴∠AOC+∠DOB=∠DOB+∠OBD=90°,
∴∠AOC=∠OBD,
在△ACO和△ODB中
∴△ACO≌△ODB(AAS),
∵A(2,1),
∴OD=AC=1,BD=OC=2,
∴B(-1,2);
(2)∵抛物线过O点,
∴可设抛物线解析式为y=ax2+bx,
把A、B两点坐标代入可得,解得,
∴经过A、B、O原点的抛物线解析式为y=x2-x;
(3)∵四边形ABOP,
∴可知点P在线段OA的下方,
过P作PE∥y轴交AO于点E,如图2,
设直线AO解析式为y=kx,
∵A(2,1),
∴k=,
∴直线AO解析式为y=x,
设P点坐标为(t,t2-t),则E(t,t),
∴PE=t-(t2-t)=-t2+t=-(t-1)2+,
∴S△AOP=PE×2=PE═-(t-1)2+,
由A(2,1)可求得OA=OB=,
∴S△AOB=AO•BO=,
∴S四边形ABOP=S△AOB+S△AOP=-(t-1)2++=,
∵-<0,
∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),
综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-).
【点睛】
本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.
22、1.
【解析】
直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.
【详解】
解:原式=﹣1++4﹣1﹣(﹣1)
=﹣1++4﹣1﹣+1
=1.
【点睛】
本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.
23、(1)详见解析;(1)
【解析】
(1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
(1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
【详解】
(1)证明:连接OE交DF于点H,
∵EF是⊙O的切线,OE是⊙O的半径,
∴OE⊥EF.
∴∠F+∠EHF=90°.
∵FD⊥OC,
∴∠DOH+∠DHO=90°.
∵∠EHF=∠DHO,
∴∠F=∠DOH.
∵∠CBE=∠DOH,
∴
(1)解:∵∠CBE=15°,
∴∠F=∠COE=1∠CBE=30°.
∵⊙O的半径是,点D是OC中点,
∴.
在Rt△ODH中,cos∠DOH=,
∴OH=1.
∴.
在Rt△FEH中,
∴
【点睛】
本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
24、(1)见解析;(2)见解析;(3)见解析,.
【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
【详解】
解:(1)如图所示;
(2)如图所示;(3)如图所示;CE=.
【点睛】
本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
2022年湖北省鄂州市区中考适应性考试数学试题含解析: 这是一份2022年湖北省鄂州市区中考适应性考试数学试题含解析,共21页。试卷主要包含了已知A样本的数据如下,一、单选题等内容,欢迎下载使用。
2022届广东省英德市市区重点中学中考数学五模试卷含解析: 这是一份2022届广东省英德市市区重点中学中考数学五模试卷含解析,共14页。试卷主要包含了答题时请按要求用笔,一元二次方程=0的两个根是,的相反数是等内容,欢迎下载使用。
2021-2022学年湖北省鄂州市区中考数学模拟预测试卷含解析: 这是一份2021-2022学年湖北省鄂州市区中考数学模拟预测试卷含解析,共23页。试卷主要包含了方程的解是等内容,欢迎下载使用。