终身会员
搜索
    上传资料 赚现金
    2022年江苏省苏州市区中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2022年江苏省苏州市区中考数学全真模拟试题含解析01
    2022年江苏省苏州市区中考数学全真模拟试题含解析02
    2022年江苏省苏州市区中考数学全真模拟试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省苏州市区中考数学全真模拟试题含解析

    展开
    这是一份2022年江苏省苏州市区中考数学全真模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下面调查方式中,合适的是,方程的解是,下列算式中,结果等于a5的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.计算(-ab2)3÷(-ab)2的结果是(  )
    A.ab4 B.-ab4 C.ab3 D.-ab3
    2.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )

    A.点A B.点B C.点C D.点D
    3.估计-1的值在( )
    A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间
    4.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
    A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
    5.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是  
    A. B. C. D.
    6.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
    A. B. C. D.
    7.下面调查方式中,合适的是(  )
    A.调查你所在班级同学的体重,采用抽样调查方式
    B.调查乌金塘水库的水质情况,采用抽样调査的方式
    C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
    D.要了解全市初中学生的业余爱好,采用普查的方式
    8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于(  )

    A.2 B.3 C. D.
    9.方程的解是( )
    A. B. C. D.
    10.下列算式中,结果等于a5的是(  )
    A.a2+a3 B.a2•a3 C.a5÷a D.(a2)3
    11.若,,则的值是(  )
    A.2 B.﹣2 C.4 D.﹣4
    12.下列美丽的壮锦图案是中心对称图形的是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.

    14.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个) 

    15.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.

    16.观察下列各等式:




    ……
    根据以上规律可知第11行左起第一个数是__.
    17.将一副三角尺如图所示叠放在一起,则的值是   .

    18.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“<”或“=”).
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.
    (1)求该抛物线所表示的二次函数的表达式;
    (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
    (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.

    20.(6分)如图,在△ABC中,∠ACB=90°,AC=1.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.
    (1)求证;四边形PBEC是平行四边形;
    (2)填空:
    ①当AP的值为   时,四边形PBEC是矩形;
    ②当AP的值为   时,四边形PBEC是菱形.

    21.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
    (1)求证:直线BF是⊙O的切线;
    (2)若AB=5,sin∠CBF=,求BC和BF的长.

    22.(8分)如图,在中,,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径.
    求证:与相切;当时,求的半径.
    23.(8分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
    24.(10分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
    (1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
    学员
    培训时段
    培训学时
    培训总费用
    小明
    普通时段
    20
    6000元
    高峰时段
    5
    节假日时段
    15
    小华
    普通时段
    30
    5400元
    高峰时段
    2
    节假日时段
    8
    (2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
    ①求y与x之间的函数关系式,并确定自变量x的取值范围;
    ②小陈如何选择培训时段,才能使得本次培训的总费用最低?
    25.(10分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).
    (1)求m的值和一次函数的解析式;
    (2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;
    (3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.

    26.(12分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
    判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.
    27.(12分)如图,∠MON的边OM上有两点A、B在∠MON的内部求作一点P,使得点P到∠MON的两边的距离相等,且△PAB的周长最小.(保留作图痕迹,不写作法)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
    (-ab2)3÷(-ab)2
    =-a3b6÷a2b2
    =-ab4,
    故选B.
    2、B
    【解析】
    ,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.
    【详解】




    因为0.268<0.732<1.268,
    所以 表示的点与点B最接近,
    故选B.
    3、B
    【解析】
    试题分析:∵2<<3,
    ∴1<-1<2,
    即-1在1到2之间,
    故选B.
    考点:估算无理数的大小.
    4、C
    【解析】
    试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
    考点:科学记数法.
    5、B
    【解析】
    解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
    点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
    6、B
    【解析】
    分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
    详解:画树状图,得

    ∴共有8种情况,经过每个路口都是绿灯的有一种,
    ∴实际这样的机会是.
    故选B.
    点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
    7、B
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、调查你所在班级同学的体重,采用普查,故A不符合题意;
    B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
    C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
    D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
    故选B.
    【点睛】
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    8、A
    【解析】
    分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.
    详解:如图,

    ∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,
    ∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
    ∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
    ∴A′E∥AB,
    ∴△DA′E∽△DAB,
    则,即,
    解得A′D=2或A′D=-(舍),
    故选A.
    点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
    9、D
    【解析】
    按照解分式方程的步骤进行计算,注意结果要检验.
    【详解】
    解:





    经检验x=4是原方程的解
    故选:D
    【点睛】
    本题考查解分式方程,注意结果要检验.
    10、B
    【解析】
    试题解析:A、a2与a3不能合并,所以A选项错误;
    B、原式=a5,所以B选项正确;
    C、原式=a4,所以C选项错误;
    D、原式=a6,所以D选项错误.
    故选B.
    11、D
    【解析】
    因为,所以,因为,故选D.
    12、A
    【解析】
    【分析】根据中心对称图形的定义逐项进行判断即可得.
    【详解】A、是中心对称图形,故此选项正确;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误,
    故选A.
    【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.4
    【解析】
    由概率估计图案在整副画中所占比例,再求出图案的面积.
    【详解】
    估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.
    故答案为1.4
    【点睛】
    本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.
    14、或
    【解析】
    因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.
    【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.
    15、50
    【解析】
    根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
    【详解】
    解:设铅直距离为x,则水平距离为,
    根据题意得:,
    解得:(负值舍去),
    则她实际上升了50米,
    故答案为:50
    【点睛】
    本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.
    16、-1.
    【解析】
    观察规律即可解题.
    【详解】
    解:第一行=12=1,第二行=22=4,第三行=32=9...
    ∴第n行=n2,第11行=112=121,
    又∵左起第一个数比右侧的数大一,
    ∴第11行左起第一个数是-1.
    【点睛】
    本题是一道规律题,属于简单题,认真审题找到规律是解题关键.
    17、
    【解析】
    试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.
    ∴△ABE∽△DCE.∴.
    ∵在Rt△ACB中∠B=45°,∴AB=AC.
    ∵在RtACD中,∠D=30°,∴.
    ∴.
    18、>
    【解析】
    分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
    详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
    故答案为>.
    点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
    【解析】
    分析:(1)待定系数法求解可得;
    (2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
    (3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.
    详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
    将点C(0,2)代入,得:-4a=2,
    解得:a=-,
    则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
    (2)由题意知点D坐标为(0,-2),
    设直线BD解析式为y=kx+b,
    将B(4,0)、D(0,-2)代入,得:
    ,解得:,
    ∴直线BD解析式为y=x-2,
    ∵QM⊥x轴,P(m,0),
    ∴Q(m,-m2+m+2)、M(m,m-2),
    则QM=-m2+m+2-(m-2)=-m2+m+4,
    ∵F(0,)、D(0,-2),
    ∴DF=,
    ∵QM∥DF,
    ∴当-m2+m+4=时,四边形DMQF是平行四边形,
    解得:m=-1(舍)或m=3,
    即m=3时,四边形DMQF是平行四边形;
    (3)如图所示:

    ∵QM∥DF,
    ∴∠ODB=∠QMB,
    分以下两种情况:
    ①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
    则,
    ∵∠MBQ=90°,
    ∴∠MBP+∠PBQ=90°,
    ∵∠MPB=∠BPQ=90°,
    ∴∠MBP+∠BMP=90°,
    ∴∠BMP=∠PBQ,
    ∴△MBQ∽△BPQ,
    ∴,即,
    解得:m1=3、m2=4,
    当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
    ∴m=3,点Q的坐标为(3,2);
    ②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
    此时m=-1,点Q的坐标为(-1,0);
    综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
    点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.
    【详解】
    请在此输入详解!
    20、证明见解析;(2)①9;②12.5.
    【解析】
    (1)根据对角线互相平分的四边形为平行四边形证明即可;
    (2)①若四边形PBEC是矩形,则∠APC=90°,求得AP即可;
    ②若四边形PBEC是菱形,则CP=PB,求得AP即可.
    【详解】
    ∵点D是BC的中点,∴BD=CD.
    ∵DE=PD,∴四边形PBEC是平行四边形;
    (2)①当∠APC=90°时,四边形PBEC是矩形.
    ∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴当AP的值为9时,四边形PBEC是矩形;
    ②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.
    当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC是菱形.
    【点睛】
    本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质.
    21、(1)证明见解析;(2)BC=;.
    【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.
    (2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.
    (1)证明:连接AE,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴∠1+∠2=90°.
    ∵AB=AC,
    ∴∠1=∠CAB.
    ∵∠CBF=∠CAB,
    ∴∠1=∠CBF
    ∴∠CBF+∠2=90°
    即∠ABF=90°
    ∵AB是⊙O的直径,
    ∴直线BF是⊙O的切线.
    (2)解:过点C作CG⊥AB于G.

    ∵sin∠CBF=,∠1=∠CBF,
    ∴sin∠1=,
    ∵在Rt△AEB中,∠AEB=90°,AB=5,
    ∴BE=AB•sin∠1=,
    ∵AB=AC,∠AEB=90°,
    ∴BC=2BE=2,
    在Rt△ABE中,由勾股定理得AE==2,
    ∴sin∠2===,cos∠2===,
    在Rt△CBG中,可求得GC=4,GB=2,
    ∴AG=3,
    ∵GC∥BF,
    ∴△AGC∽△ABF,
    ∴=.
    ∴BF==.
    22、 (1)证明见解析;(2).
    【解析】
    (1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;
    (2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.
    【详解】
    (1)连接OM,则OM=OB,
    ∴∠1=∠2,
    ∵BM平分∠ABC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    ∴OM∥BC,
    ∴∠AMO=∠AEB,
    在△ABC中,AB=AC,AE是角平分线,
    ∴AE⊥BC,
    ∴∠AEB=90°,
    ∴∠AMO=90°,
    ∴OM⊥AE,
    ∵点M在圆O上,
    ∴AE与⊙O相切;

    (2)在△ABC中,AB=AC,AE是角平分线,
    ∴BE=BC,∠ABC=∠C,
    ∵BC=4,cosC=
    ∴BE=2,cos∠ABC=,
    在△ABE中,∠AEB=90°,
    ∴AB==6,
    设⊙O的半径为r,则AO=6-r,
    ∵OM∥BC,
    ∴△AOM∽△ABE,
    ∴∴,
    ∴,
    解得,
    ∴的半径为.
    【点睛】
    本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.
    23、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.
    【解析】
    (1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
    (2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
    【详解】
    解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,

    x=15,
    经检验x=15是原方程的解.
    ∴40﹣x=1.
    甲,乙两种玩具分别是15元/件,1元/件;
    (2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,

    解得20≤y<2.
    因为y是整数,甲种玩具的件数少于乙种玩具的件数,
    ∴y取20,21,22,23,
    共有4种方案.
    考点:分式方程的应用;一元一次不等式组的应用.
    24、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).
    【解析】
    (1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;
    (2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;
    ②根据一次函数的性质结合自变量的取值范围即可求解.
    【详解】
    (1)由题意,得,
    解得,
    故a,b的值分别是120,180;
    (2)①由题意,得y=120x+180(40-x),
    化简得y=-60x+7200,
    ∵普通时段的培训学时不会超过其他两个时段总学时的,
    ∴x≤(40-x),
    解得x≤,
    又x≥0,
    ∴0≤x≤;
    ②∵y=-60x+7200,
    k=-60<0,
    ∴y随x的增大而减小,
    ∴x取最大值时,y有最小值,
    ∵0≤x≤;
    ∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.
    25、(1)y=1x﹣1(1)1(3)x>1
    【解析】
    试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;
    (1)先确定B点坐标,然后根据三角形面积公式计算;
    (3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.
    试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),
    把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,
    所以一次函数解析式为y=1x﹣1;
    (1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),
    所以S△AOB=×1×1=1;
    (3)自变量x的取值范围是x>1.
    考点:两条直线相交或平行问题
    26、(1) DE与⊙O相切; 理由见解析;(2).
    【解析】
    (1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;
    (2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.
    【详解】
    解:(1)直线DE与⊙O相切.
    理由如下:连接OD.

    ∵OA=OD
    ∴∠ODA=∠A
    又∵∠BDE=∠A
    ∴∠ODA=∠BDE
    ∵AB是⊙O直径
    ∴∠ADB=90°
    即∠ODA+∠ODB=90°
    ∴∠BDE+∠ODB=90°
    ∴∠ODE=90°
    ∴OD⊥DE
    ∴DE与⊙O相切;
    (2)∵R=5,
    ∴AB=10,
    在Rt△ABC中
    ∵tanA=
    ∴BC=AB•tanA=10×,
    ∴AC=,
    ∵∠BDC=∠ABC=90°,∠BCD=∠ACB
    ∴△BCD∽△ACB

    ∴CD=.
    【点睛】
    本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.
    27、详见解析
    【解析】
    作∠MON的角平分线OT,在ON上截取OA′,使得OA′=OA,连接BA′交OT于点P,点P即为所求.
    【详解】
    解:如图,点P即为所求.

    【点睛】
    本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题.

    相关试卷

    江苏省徐州市区联校2022年中考数学全真模拟试卷含解析: 这是一份江苏省徐州市区联校2022年中考数学全真模拟试卷含解析,共19页。试卷主要包含了学校小组名同学的身高,估计5﹣的值应在等内容,欢迎下载使用。

    江苏省苏州市振华中学2022年中考数学全真模拟试题含解析: 这是一份江苏省苏州市振华中学2022年中考数学全真模拟试题含解析,共23页。试卷主要包含了答题时请按要求用笔,将抛物线绕着点等内容,欢迎下载使用。

    江苏省苏州市实验中学2022年中考数学全真模拟试题含解析: 这是一份江苏省苏州市实验中学2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,﹣18的倒数是,在同一平面内,下列说法,若x>y,则下列式子错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map