终身会员
搜索
    上传资料 赚现金

    2022年湖南省邵阳市中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2022年湖南省邵阳市中考数学对点突破模拟试卷含解析第1页
    2022年湖南省邵阳市中考数学对点突破模拟试卷含解析第2页
    2022年湖南省邵阳市中考数学对点突破模拟试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省邵阳市中考数学对点突破模拟试卷含解析

    展开

    这是一份2022年湖南省邵阳市中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )

    A. B.1 C.2 D.4
    2.在平面直角坐标系内,点P(a,a+3)的位置一定不在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )

    A.2人 B.16人
    C.20人 D.40人
    4.cos30°的值为(   )
    A.1                              B.                    C.                          D.
    5.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )
    A. B. C. D.
    6.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是(  )

    A.① B.③ C.②或④ D.①或③
    7.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是(  )

    A. B. C. D.
    8.a、b互为相反数,则下列成立的是(  )
    A.ab=1 B.a+b=0 C.a=b D.=-1
    9.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
    A. B. C. D.
    10.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为(  )
    A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.的相反数是_____,倒数是_____,绝对值是_____
    12.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.
    13.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).
    14.在△ABC中,∠C=90°,若tanA=,则sinB=______.
    15.一个正多边形的每个内角等于,则它的边数是____.
    16.若关于的不等式组无解, 则的取值范围是 ________.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.
    (1)求k,a,b的值;
    (2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
    (3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.

    18.(8分) “C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)

    19.(8分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.
    20.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.
    (1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为   ;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为   ;若点P(a,b),则点P的“旋转对应点”P'的坐标为   ;
    (2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';
    (3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.

    21.(8分)如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
    (1)依题意补全图形;
    (2)猜想AE与CD的数量关系,并证明.

    22.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.

    23.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
    (Ⅰ)求二次函数的解析式及点A,B的坐标;
    (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
    (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.

    24.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
    求证:AD=AE.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
    【详解】
    在Rt△AOB中,AD=2,AD为斜边OB的中线,

    ∴OB=2AD=4,
    由周长为4+2
    ,得到AB+AO=2,
    设AB=x,则AO=2-x,
    根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
    整理得:x2-2x+4=0,
    解得x1=+,x2=-,
    ∴AB=+,OA=-,
    过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
    ∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
    在Rt△DEO中,利用勾股定理得:DE==(+)),
    ∴k=-DE•OE=-(+))×(-))=1.
    ∴S△AOC=DE•OE=,
    故选A.
    【点睛】
    本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
    2、D
    【解析】
    判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.
    【详解】
    当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限, 
    故选D.
    【点睛】
    本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.
    3、C
    【解析】
    先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
    【详解】
    400×人.
    故选C.
    【点睛】
    考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
    4、D
    【解析】
    cos30°=.
    故选D.
    5、D
    【解析】
    先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.
    【详解】
    解:∵点M的坐标是(4,3),
    ∴点M到x轴的距离是3,到y轴的距离是4,
    ∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
    ∴r的取值范围是3<r<4,
    故选:D.
    【点睛】
    本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.
    6、D
    【解析】
    分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
    【详解】
    分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;
    ②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.
    故答案为①或③.
    故选D.
    【点睛】
    本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
    7、C
    【解析】
    根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
    【详解】
    解:由二次函数的图像可知a0,c0,
    ∴正比例函数过二四象限,反比例函数过一三象限.
    故选C.
    【点睛】
    本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
    8、B
    【解析】
    依据相反数的概念及性质即可得.
    【详解】
    因为a、b互为相反数,
    所以a+b=1,
    故选B.
    【点睛】
    此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.
    9、A
    【解析】
    试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
    解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
    从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
    综上所知这个几何体是圆柱.
    故选A.
    考点:由三视图判断几何体.
    10、D
    【解析】
    根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:
    686000=6.86×105,
    故选:D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、 ,
    【解析】
    ∵只有符号不同的两个数是互为相反数,
    ∴的相反数是;
    ∵乘积为1的两个数互为倒数,
    ∴的倒数是;
    ∵负数得绝对值是它的相反数,
    ∴绝对值是
    故答案为(1). (2). (3).
    12、.
    【解析】
    根据题意,画出树状图,然后根据树状图和概率公式求概率即可.
    【详解】
    解:画树状图得:

    共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,
    至少有一辆汽车向左转的概率是:.
    故答案为:.
    【点睛】
    此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.
    13、0.50
    【解析】
    直接使用科学计算器计算即可,结果需保留二位有效数字.
    【详解】
    用科学计算器计算得0.5,
    故填0.50,
    【点睛】
    此题主要考查科学计算器的使用,注意结果保留二位有效数字.
    14、
    【解析】
    分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
    详解:如图所示:

    ∵∠C=90°,tanA=,
    ∴设BC=x,则AC=2x,故AB=x,
    则sinB=.
    故答案为: .
    点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
    15、十二
    【解析】
    首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.
    【详解】
    ∵一个正多边形的每个内角为150°,
    ∴它的外角为30°,
    360°÷30°=12,
    故答案为十二.
    【点睛】
    此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.
    16、
    【解析】
    首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
    【详解】

    解①得:x>a+3,
    解②得:x<1.
    根据题意得:a+3≥1,
    解得:a≥-2.
    故答案是:a≥-2.
    【点睛】
    本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..

    三、解答题(共8题,共72分)
    17、(1)k=1、a=2、b=4;(2)s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣,)
    【解析】
    (1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.
    (3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.
    【详解】
    (1)∵OA=4
    ∴A(﹣4,0)
    ∴﹣16+8a=0
    ∴a=2,
    ∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,
    ∴B(﹣1,3),
    将A(﹣4,0)B(﹣1,3)代入函数解析式,得,
    解得,
    直线AB的解析式为y=x+4,
    ∴k=1、a=2、b=4;
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,

    由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,
    ∴当x=t时,yP=﹣t2﹣4t,yN=t+4
    PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,
    BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,
    S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,
    化简,得s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;
    ∴﹣4<t<﹣1
    (3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),
    ∴CD∥OA
    ∵B(﹣1,3).
    当y=3时,x=﹣3,
    ∴P(﹣3,3),
    连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,

    可证R在DT上
    ∴PN=ON=3
    ∴∠PON=∠OPN=45°
    ∴∠BPR=∠PON=45°,
    ∵OA=OC,∠AOC=90°
    ∴∠PBR=∠BAO=45°,
    ∴PO⊥AC
    ∵∠BPQ+∠CBO=180,
    ∴∠BPQ=∠BCO+∠BOC
    过点Q作QS⊥PN,垂足是S,
    ∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,
    可求BR=,OR=2,
    设Q点的横坐标是m,
    当x=m时y=m+4,
    ∴SQ=m+3,PS=﹣m﹣1
    ∴,解得m=﹣.
    当x=﹣时,y=,
    Q(﹣,).
    【点睛】
    本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.
    18、线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.
    【解析】
    试题分析:在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长.
    试题解析:∵BN∥ED,
    ∴∠NBD=∠BDE=37°,
    ∵AE⊥DE,
    ∴∠E=90°,
    ∴BE=DE•tan∠BDE≈18.75(cm),
    如图,过C作AE的垂线,垂足为F,

    ∵∠FCA=∠CAM=45°,
    ∴AF=FC=25cm,
    ∵CD∥AE,
    ∴四边形CDEF为矩形,
    ∴CD=EF,
    ∵AE=AB+EB=35.75(cm),
    ∴CD=EF=AE-AF≈10.8(cm),
    答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.
    【点睛】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键.
    19、.
    【解析】
    先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.
    【详解】
    ,
    =
    =
    =
    =,
    当x=0时,原式=.
    20、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)
    【解析】
    (1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;
    ②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;
    ③当P(a,b)时,同①的方法得,即可得出结论;
    (2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;
    (3)先确定出yPP'=x+3,即可得出结论.
    【详解】
    解:(1)如图1,

    ①当P(﹣4,2)时,
    ∵PA⊥y轴,
    ∴∠PAH=90°,OA=2,PA=4,
    由旋转知,P'A=4,∠PAP'=60°,
    ∴∠P'AH=30°,
    在Rt△P'AH中,P'H=P'A=2,
    ∴AH=P'H=2,
    ∴OH=OA+AH=2+2,
    ∴P'(﹣2,2+2),
    ②当P'(﹣5,16)时,
    在Rt△P'AH中,∠P'AH=30°,P'H=5,
    ∴P'A=10,AH=5,
    由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,
    ∴P(﹣10,16﹣5),
    ③当P(a,b)时,同①的方法得,P'(,b﹣a),
    故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);
    (2)如图2,过点Q作QB⊥y轴于B,

    ∴∠BQQ'=60°,
    由题意知,△PAP'是等边三角形,
    ∴∠PAP'=∠PP'A=60°,
    ∵QB⊥y轴,PA⊥y轴,
    ∴QB∥PA,
    ∴∠P'QQ'=∠PAP'=60°,
    ∴∠P'QQ'=60°=∠PP'A,
    ∴PP'∥QQ';
    (3)设yPP'=kx+b',
    由题意知,k=,
    ∵直线经过点(,6),
    ∴b'=3,
    ∴yPP'=x+3,
    令y=0,
    ∴x=﹣,
    ∴直线PP'与x轴的交点坐标(﹣,0).
    【点睛】
    此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.
    21、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意画出图形即可;
    (2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.
    【详解】
    解:(1)如图:

    (2)AE与 CD的数量关系为AE=CD.
    证明:∵∠C=90°,AC=BC,
    ∴∠A=45°.
    ∵DE⊥AB,
    ∴∠ADE=∠A=45°.
    ∴AE=DE,
    ∵BD平分∠ABC,
    ∴CD=DE,
    ∴AE=CD.
    【点睛】
    此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.
    22、(1)证明见解析(2)-1
    【解析】
    (1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
    (2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
    【详解】
    (1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
    ∴AE=AB,AF=AC,∠EAF=∠BAC,
    ∴∠EAF+∠BAF=∠BAC+∠BAF,
    即∠EAB=∠FAC,
    在△ACF和△ABE中,
    △ACF≌△ABE
    BE=CF.
    (2)∵四边形ACDE为菱形,AB=AC=1,
    ∴DE=AE=AC=AB=1,AC∥DE,
    ∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
    ∴∠AEB=∠ABE=45°,
    ∴△ABE为等腰直角三角形,
    ∴BE=AC=,
    ∴BD=BE﹣DE=.
    考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
    23、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
    【解析】
    (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
    (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
    (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
    【详解】
    (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
    ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
    令y=0,得到:x2﹣4x﹣5=0,
    解得x=﹣1或5,
    ∴A(﹣1,0),B(5,0).
    (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
    把点Q′坐标代入y=﹣x2+4x+5,
    得到:m2﹣4m﹣5=﹣m2﹣4m+5,
    ∴m=或(舍弃),
    ∴Q(,).
    (Ⅲ)如图,作MK⊥对称轴x=2于K.

    ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
    ∵此时点M的横坐标为1,
    ∴y=8,
    ∴M(1,8),N(2,13),
    ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
    此时M′的横坐标为3,可得M′(3,8),N′(2,3).
    【点睛】
    本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
    24、见解析
    【解析】
    试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.
    试题解析:∵AB=AC,点D是BC的中点,
    ∴AD⊥BC,∴∠ADB=90°.
    ∵AE⊥EB,∴∠E=∠ADB=90°.
    ∵AB平分∠DAE,∴∠BAD=∠BAE.
    在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,
    ∴△ADB≌△AEB(AAS),∴AD=AE.

    相关试卷

    2023年湖南省邵阳市中考数学模拟试卷(含解析):

    这是一份2023年湖南省邵阳市中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省常德芷兰实验校2022年中考数学对点突破模拟试卷含解析:

    这是一份湖南省常德芷兰实验校2022年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-sin60°的倒数为等内容,欢迎下载使用。

    2022届湖南省邵阳市名校中考数学对点突破模拟试卷含解析:

    这是一份2022届湖南省邵阳市名校中考数学对点突破模拟试卷含解析,共23页。试卷主要包含了下列4个数,下列运算结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map