年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省吴江青云中学中考数学模试卷含解析

    2022年江苏省吴江青云中学中考数学模试卷含解析第1页
    2022年江苏省吴江青云中学中考数学模试卷含解析第2页
    2022年江苏省吴江青云中学中考数学模试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省吴江青云中学中考数学模试卷含解析

    展开

    这是一份2022年江苏省吴江青云中学中考数学模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,计算正确的是,的相反数是等内容,欢迎下载使用。
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(共10小题,每小题3分,共30分)
    1.下列计算结果为a6的是( )
    A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3
    2.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为( )
    A.3B.4C.5D.6
    3.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是( )
    A.60°B.45°C.35°D.30°
    4.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
    A.25°B.50°C.60°D.30°
    5.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是( )
    A.4B.5C.10D.11
    6.如图,中,E是BC的中点,设,那么向量用向量表示为( )
    A.B.C.D.
    7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
    A.B.
    C.D.
    8.下列各式中,计算正确的是 ( )
    A.B.
    C.D.
    9.如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )
    A.B.
    C.D.
    10.的相反数是( )
    A.2B.﹣2C.4D.﹣
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.把多项式x3﹣25x分解因式的结果是_____
    12.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.
    13.当x为_____时,分式的值为1.
    14.在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=和x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.则A3的坐标为_______.

    15.点A(-2,1)在第_______象限.
    16.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
    三、解答题(共8题,共72分)
    17.(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.
    (1)当直线m的表达式为y=x时,
    ①在点,,中,直线m的平行点是______;
    ②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.
    (2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.
    18.(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
    当的半径为1时.
    在点、、中,的“特征点”是______;
    点P在直线上,若点P为的“特征点”求b的取值范围;
    的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.
    19.(8分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.
    (1)求点D沿三条圆弧运动到点G所经过的路线长;
    (2)判断线段GB与DF的长度关系,并说明理由.
    20.(8分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点.
    求抛物线的表达式;
    若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标.
    21.(8分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
    (1)求证:AB=AC;
    (2)若,求⊙O的半径.
    22.(10分)计算:解方程:
    23.(12分)(1)(问题发现)小明遇到这样一个问题:
    如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
    (1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
    (2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
    不变),试猜想AD与DE之间的数量关系,并证明你的结论.
    (3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
    请直接写出△ABC与△ADE的面积之比.
    24.某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.
    【详解】
    A、a2•a3=a5,此选项不符合题意;
    B、a12÷a2=a10,此选项不符合题意;
    C、(a2)3=a6,此选项符合题意;
    D、(-a2)3=-a6,此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.
    2、A
    【解析】
    解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为2.故选A.
    3、A
    【解析】
    试题解析:连接OD,
    ∵四边形ABCO为平行四边形,
    ∴∠B=∠AOC,
    ∵点A. B. C.D在⊙O上,
    由圆周角定理得,
    解得,
    ∵OA=OD,OD=OC,
    ∴∠DAO=∠ODA,∠ODC=∠DCO,
    故选A.
    点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
    4、A
    【解析】
    如图,∵∠BOC=50°,
    ∴∠BAC=25°,
    ∵AC∥OB,
    ∴∠OBA=∠BAC=25°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=25°.
    故选A.
    5、B
    【解析】
    试题分析:(4+x+3+30+33)÷3=7,
    解得:x=3,
    根据众数的定义可得这组数据的众数是3.
    故选B.
    考点:3.众数;3.算术平均数.
    6、A
    【解析】
    根据,只要求出即可解决问题.
    【详解】
    解:四边形ABCD是平行四边形,






    故选:A.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    7、B
    【解析】
    设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
    【详解】
    解:设大马有匹,小马有匹,由题意得:

    故选:B.
    【点睛】
    本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
    8、C
    【解析】
    接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
    【详解】
    A、无法计算,故此选项错误;
    B、a2•a3=a5,故此选项错误;
    C、a3÷a2=a,正确;
    D、(a2b)2=a4b2,故此选项错误.
    故选C.
    【点睛】
    此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
    9、B
    【解析】
    先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象
    【详解】
    根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高
    为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形
    完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S
    关于t的图象的中间部分为水平的线段,故A,D选项错误;
    当t=0时,S=0,故C选项错误,B选项正确;
    故选:B
    【点睛】
    本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键
    10、A
    【解析】
    分析:根据只有符号不同的两个数是互为相反数解答即可.
    详解:的相反数是,即2.
    故选A.
    点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x(x+5)(x﹣5).
    【解析】
    分析:首先提取公因式x,再利用平方差公式分解因式即可.
    详解:x3-25x
    =x(x2-25)
    =x(x+5)(x-5).
    故答案为x(x+5)(x-5).
    点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    12、, +2.
    【解析】
    当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.
    【详解】
    当点P旋转至CA的延长线上时,如图2.
    ∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,
    ∴BP=,
    ∵BP的中点是F,
    ∴CF=BP= .
    取AB的中点M,连接MF和CM,如图2.
    ∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,
    ∴AB=2.
    ∵M为AB中点,
    ∴CM=AB=,
    ∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,
    ∴AP=AD=4,
    ∵M为AB中点,F为BP中点,
    ∴FM=AP=2.
    当且仅当M、F、C三点共线且M在线段CF上时CF最大,
    此时CF=CM+FM=+2.
    故答案为, +2.
    【点睛】
    考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.
    13、2
    【解析】
    分式的值是1的条件是,分子为1,分母不为1.
    【详解】
    ∵3x-6=1,
    ∴x=2,
    当x=2时,2x+1≠1.
    ∴当x=2时,分式的值是1.
    故答案为2.
    【点睛】
    本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.
    14、A3()
    【解析】
    设直线y=与x轴的交点为G,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,由条件可求得,再根据等腰三角形可分别求得A1D、A2E、A3F,可得到A1,A2,A3的坐标.
    【详解】
    设直线y=与x轴的交点为G,
    令y=0可解得x=-4,
    ∴G点坐标为(-4,0),
    ∴OG=4,
    如图1,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,
    ∵△A1B1O为等腰直角三角形,
    ∴A1D=OD,
    又∵点A1在直线y=x+上,
    ∴=,即=,
    解得A1D=1=()0,
    ∴A1(1,1),OB1=2,
    同理可得=,即=,
    解得A2E=
    =()1,则OE=OB1+B1E=,
    ∴A2(,),OB2=5,
    同理可求得A3F=
    =()2,则OF=5+=,
    ∴A3(,);
    故答案为(,)
    【点睛】
    本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变化规律是解题的关键,注意观察数据的变化.
    15、二
    【解析】
    根据点在第二象限的坐标特点解答即可.
    【详解】
    ∵点A的横坐标-2<0,纵坐标1>0,
    ∴点A在第二象限内.
    故答案为:二.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    16、y=2x+1
    【解析】
    分析:直接根据函数图象平移的法则进行解答即可.
    详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
    故答案为y=2x+1.
    点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    三、解答题(共8题,共72分)
    17、(1)①,;②,,,;(2).
    【解析】
    (1)①根据平行点的定义即可判断;
    ②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;
    (2)如图,直线OE的解析式为,设直线BC//OE交x轴于C,作CD⊥OE于D. 设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;
    【详解】
    解:(1)①因为P2、P3到直线y=x的距离为1,
    所以根据平行点的定义可知,直线m的平行点是,,
    故答案为,.
    ②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.
    设该直线与x轴交于点A,与y轴交于点B.
    如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.
    由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.
    所以.
    直线AB与⊙O的交点即为满足条件的点Q.
    连接,作轴于点N,可知.
    在中,可求.
    所以.
    在中,可求.
    所以.
    所以点的坐标为.
    同理可求点的坐标为.
    如图2,当点B在原点下方时,可求点的坐标为点的坐标为,
    综上所述,点Q的坐标为,,,.
    (2)如图,直线OE的解析式为,设直线BC∥OE交x轴于C,作CD⊥OE于D.
    当CD=1时,在Rt△COD中,∠COD=60°,
    ∴,
    设⊙A与直线BC相切于点F,
    在Rt△ACE中,同法可得,
    ∴,
    ∴,
    根据对称性可知,当⊙A在y轴左侧时,,
    观察图象可知满足条件的N的值为:.
    【点睛】
    此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.
    18、(1)①、;②(2)或,.
    【解析】
    据若,则点P为的“特征点”,可得答案;
    根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;
    根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案.
    【详解】
    解:,,
    点是的“特征点”;
    ,,
    点是的“特征点”;
    ,,
    点不是的“特征点”;
    故答案为、
    如图1,
    在上,若存在的“特征点”点P,点O到直线的距离.
    直线交y轴于点E,过O作直线于点H.
    因为.
    在中,可知.
    可得同理可得.
    的取值范围是:
    如图2

    设C点坐标为,
    直线,.
    ,,
    ,.


    线段MN上的所有点都不是的“特征点”,

    即,
    解得或,
    点C的横坐标的取值范围是或,.
    故答案为 :(1)①、;②(2)或,.
    【点睛】
    本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了.
    19、(1)6π;(2)GB=DF,理由详见解析.
    【解析】
    (1)根据弧长公式l= 计算即可;
    (2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.
    【详解】
    解:(1)∵AD=2,∠DAE=90°,
    ∴弧DE的长 l1= =π,
    同理弧EF的长 l2= =2π,弧FG的长 l3= =3π,
    所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.
    (2)GB=DF.
    理由如下:延长GB交DF于H.
    ∵CD=CB,∠DCF=∠BCG,CF=CG,
    ∴△FDC≌△GBC.
    ∴GB=DF.
    【点睛】
    本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.
    20、为;点Q的坐标为或.
    【解析】
    依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.
    【详解】
    抛物线顶点A的横坐标是,
    ,即,解得.

    将代入得:,
    抛物线的解析式为.
    抛物线向下平移了4个单位.
    平移后抛物线的解析式为,.

    点O在PQ的垂直平分线上.
    又轴,
    点Q与点P关于x轴对称.
    点Q的纵坐标为.
    将代入得:,解得:或.
    点Q的坐标为或.
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.
    21、(1)证明见解析;(2)1.
    【解析】
    (1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;
    (2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.
    【详解】
    解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,
    ∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,
    ∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,
    ∴AB=AC;
    (2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,
    在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,
    ∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,
    则⊙O的半径为1.
    【点睛】
    本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.
    22、 (1)10;(2)原方程无解.
    【解析】
    (1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)原式==10;
    (2)去分母得:3(5x﹣4)+3x﹣6=4x+10,
    解得:x=2,
    经检验:x=2是增根,原方程无解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    23、(1)AD=DE;(2)AD=DE,证明见解析;(3).
    【解析】
    试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
    试题解析:(10分)
    (1)AD=DE.
    (2)AD=DE.
    证明:如图2,过点D作DF//AC,交AC于点F,
    ∵△ABC是等边三角形,
    ∴AB=BC,∠B=∠ACB=∠ABC=60°.
    又∵DF//AC,
    ∴∠BDF=∠BFD=60°
    ∴△BDF是等边三角形,BF=BD,∠BFD=60°,
    ∴AF=CD,∠AFD=120°.
    ∵EC是外角的平分线,
    ∠DCE=120°=∠AFD.
    ∵∠ADC是△ABD的外角,
    ∴∠ADC=∠B+∠FAD=60°+∠FAD.
    ∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
    ∴∠FAD=∠EDC.
    ∴△AFD≌△DCE(ASA),
    ∴AD=DE;
    (3).
    考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
    24、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
    (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
    【详解】
    (1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
    根据题意得:,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    ∴x+2=1.
    答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
    (2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
    根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
    解得:m≤2.
    答:这所学校最多可购买2个乙种足球.
    【点睛】
    本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.

    相关试卷

    2023-2024学年江苏省苏州市吴江区青云中学七年级(下)期中数学模拟试卷(含解析):

    这是一份2023-2024学年江苏省苏州市吴江区青云中学七年级(下)期中数学模拟试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省苏州市吴江区青云实验中学八年级(下)月考数学试卷(3月份)(含解析):

    这是一份2022-2023学年江苏省苏州市吴江区青云实验中学八年级(下)月考数学试卷(3月份)(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省苏州市吴中学、吴江、相城区市级名校2022年中考数学五模试卷含解析:

    这是一份江苏省苏州市吴中学、吴江、相城区市级名校2022年中考数学五模试卷含解析,共19页。试卷主要包含了下列命题中,真命题是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map