![2022年江西省丰城市重点达标名校中考二模数学试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13069563/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年江西省丰城市重点达标名校中考二模数学试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13069563/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年江西省丰城市重点达标名校中考二模数学试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13069563/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年江西省丰城市重点达标名校中考二模数学试题含解析
展开这是一份2022年江西省丰城市重点达标名校中考二模数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+ )x+c=0(a≠0)的两根之和( )
A.大于0B.等于0C.小于0D.不能确定
2.下列计算正确的是( )
A.2m+3n=5mn B.m2•m3=m6 C.m8÷m6=m2 D.(﹣m)3=m3
3.下列运算正确的是( )
A.B.
C.a2•a3=a5D.(2a)3=2a3
4.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A.m>B.mC.m=D.m=
5.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )
A.0<b<2B.﹣3<b<﹣1C.﹣3≤b≤﹣1D.b=﹣1或﹣3
6.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )
A.90°B.135°C.270°D.315°
7.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-2
8.已知xa=2,xb=3,则x3a﹣2b等于( )
A.B.﹣1C.17D.72
9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )
A.极差是20B.中位数是91C.众数是1D.平均数是91
10.下列计算正确的是( )
A. +=B.﹣=C.×=6D.=4
11.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
A.20%B.11%C.10%D.9.5%
12.下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )
A.B.C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
14.因式分解:9a3b﹣ab=_____.
15.方程的解为__________.
16.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.
17.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.
18.如果a2﹣a﹣1=0,那么代数式(a﹣)的值是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.
求证:△ECG≌△GHD;
20.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
21.(6分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.
(1)测试不合格人数的中位数是 .
(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;
(3)在(2)的条件下补全条形统计图和扇形统计图.
22.(8分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
23.(8分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:
(1)本次共抽查了八年级学生多少人;
(2)请直接将条形统计图补充完整;
(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;
(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?
24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.
求证:DE是⊙O的切线;若DE=3,CE=2. ①求的值;②若点G为AE上一点,求OG+EG最小值.
25.(10分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
(1)求证:△ACB∽△BED;
(2)当AD⊥AC时,求 的值;
(3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.
26.(12分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
(1)已知A(-3,0),B(-1,0),AC=OA.
①求抛物线解析式和直线OC的解析式;
②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF
27.(12分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
(1)求每千克A级别茶叶和B级别茶叶的销售利润;
(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.
【详解】
解:设的两根为x1,x2,
∵由二次函数的图象可知,,
.
设方程的两根为m,n,则
.
故选C.
【点睛】
本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.
2、C
【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
【详解】
解:A、2m与3n不是同类项,不能合并,故错误;
B、m2•m3=m5,故错误;
C、正确;
D、(-m)3=-m3,故错误;
故选:C.
【点睛】
本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
3、C
【解析】
根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
【详解】
解:A、=2,此选项错误;
B、不能进一步计算,此选项错误;
C、a2•a3=a5,此选项正确;
D、(2a)3=8a3,此选项计算错误;
故选:C.
【点睛】
本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.
4、C
【解析】
试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
∴△=32-4×2m=9-8m=0,
解得:m=.
故选C.
5、C
【解析】
根据不等式的性质得出x的解集,进而解答即可.
【详解】
∵-1<2x+b<1
∴,
∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
∴,
解得:-3≤b≤-1,
故选C.
【点睛】
此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.
6、C
【解析】
根据四边形的内角和与直角三角形中两个锐角关系即可求解.
【详解】
解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,
∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.
故选:C.
【点睛】
此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.
7、A
【解析】
试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
故选A.
考点:二次函数图象与几何变换.
8、A
【解析】
∵xa=2,xb=3,
∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
故选A.
9、D
【解析】
试题分析:因为极差为:1﹣78=20,所以A选项正确;
从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;
因为1出现了两次,最多,所以众数是1,所以C选项正确;
因为,所以D选项错误.
故选D.
考点:①众数②中位数③平均数④极差.
10、B
【解析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.
【详解】
解:A、与不能合并,所以A选项不正确;
B、-=2−=,所以B选项正确;
C、×=,所以C选项不正确;
D、=÷=2÷=2,所以D选项不正确.
故选B.
【点睛】
此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.
11、C
【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
【详解】
解:设二,三月份平均每月降价的百分率为.
根据题意,得=1.
解得,(不合题意,舍去).
答:二,三月份平均每月降价的百分率为10%
【点睛】
本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
12、D
【解析】
A、根据函数的图象可知y随x的增大而增大,故本选项错误;
B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;
C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;
D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.
故选 D.
【点睛】
本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
【点睛】
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
14、ab(3a+1)(3a-1).
【解析】
试题分析:原式提取公因式后,利用平方差公式分解即可.
试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).
考点: 提公因式法与公式法的综合运用.
15、
【解析】
两边同时乘,得到整式方程,解整式方程后进行检验即可.
【详解】
解:两边同时乘,得
,
解得,
检验:当时,≠0,
所以x=1是原分式方程的根,
故答案为:x=1.
【点睛】
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
16、16或1
【解析】
题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)当三角形的三边是5,5,6时,则周长是16;
(2)当三角形的三边是5,6,6时,则三角形的周长是1;
故它的周长是16或1.
故答案为:16或1.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
17、2+4
【解析】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
【详解】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
∵CH=EF,CH∥EF,
∴四边形EFHC是平行四边形,
∴EC=FH,
∵FA=FC,
∴EC+CF=FH+AF=AH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵CH∥DB,
∴AC⊥CH,
∴∠ACH=90°,
在Rt△ACH中,AH==4,
∴△EFC的周长的最小值=2+4,
故答案为:2+4.
【点睛】
本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.
18、1
【解析】
分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣ )的第一个括号内通分,并把分子分解因式后约分化简,然后把a2﹣a=1代入即可.
详解:∵a2﹣a﹣1=0,即a2﹣a=1,
∴原式=
=
=a(a﹣1)
=a2﹣a=1,
故答案为1
点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、见解析
【解析】
依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.
【详解】
证明:∵AF=FG,
∴∠FAG=∠FGA,
∵AG 平分∠CAB,
∴∠CAG=∠FAG,
∴∠CAG=∠FGA,
∴AC∥FG.
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∵F 是 AD 的中点,FG∥AE,
∴H 是 ED 的中点
∴FG 是线段 ED 的垂直平分线,
∴GE=GD,∠GDE=∠GED,
∴∠CGE=∠GDE,
∴△ECG≌△GHD.(AAS).
【点睛】
本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键.
20、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
【解析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
【详解】
解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
解得 k≥﹣2.
∵k为负整数,
∴k=﹣2,﹣2.
(2)当k=﹣2时,不符合题意,舍去;
当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
【点睛】
本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
21、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.
【解析】
(1)将四次测试结果排序,结合中位数的定义即可求出结论;
(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;
(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.
【详解】
解:(1)将四次测试结果排序,得:30,40,50,60,
∴测试不合格人数的中位数是(40+50)÷2=1.
故答案为1;
(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),
∴第四次测试合格人数为1×2﹣18=72(人).
设这两次测试的平均增长率为x,
根据题意得:50(1+x)2=72,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),
∴这两次测试的平均增长率为20%;
(3)50×(1+20%)=60(人),
(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,
1﹣1%=55%.
补全条形统计图与扇形统计图如解图所示.
【点睛】
本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.
22、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.
23、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【解析】
(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;
(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;
(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;
(4)利用总人数12000乘以对应的比例即可.
【详解】
(1)本次共抽查了八年级学生是:30÷20%=150人;
故答案为150;
(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=1.
(3)人均阅读时间在1~1.5小时对应的圆心角度数是:
故答案为108;
(4) (人),
答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)证明见解析(2)① ②3
【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;
(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;
②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.
【详解】
(1)连接OE
∵OA=OE,∴∠AEO=∠EAO
∵∠FAE=∠EAO,∴∠FAE=∠AEO
∴OE∥AF
∵DE⊥AF,∴OE⊥DE
∴DE是⊙O的切线
(2)①解:连接BE
∵直径AB ∴∠AEB=90°
∵圆O与BC相切
∴∠ABC=90°
∵∠EAB+∠EBA=∠EBA+∠CBE=90°
∴∠EAB=∠CBE
∴∠DAE=∠CBE
∵∠ADE=∠BEC=90°
∴△ADE∽△BEC
∴
②连接OF,交AE于G,
由①,设BC=2x,则AE=3x
∵△BEC∽△ABC ∴
∴
解得:x1=2,(不合题意,舍去)
∴AE=3x=6,BC=2x=4,AC=AE+CE=8
∴AB=,∠BAC=30°
∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°
∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形
由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60=3.
故OG+EG最小值是3.
【点睛】
本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.
25、(1)详见解析;(2) ;(3).
【解析】
(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
(3)想办法证明AB垂直平分CF即可解决问题.
【详解】
(1)证明:如图1中,
∵DE⊥CB,
∴∠ACB=∠E=90°,
∵BD是切线,
∴AB⊥BD,
∴∠ABD=90°,
∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
∴∠ABC=∠BDE,
∴△ACB∽△BED;
(2)解:如图2中,
∵△ACB∽△BED;四边形ACED是矩形,
∴BE:DE:BC=1:2:4,
∵DF∥BC,
∴△GCB∽△GDF,
∴=;
(3)解:如图3中,
∵tan∠ABC==,AC=2,
∴BC=4,BE=4,DE=8,AB=2,BD=4,
易证△DBE≌△DBF,可得BF=4=BC,
∴AC=AF=2,
∴CF⊥AB,设CF交AB于H,
则CF=2CH=2×.
【点睛】
本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
26、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
【解析】
(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
【详解】
解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
∴y=-x2-4x-3;
由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
∵QO=,∴OH=HQ=t,
∴Q(-t,-t),∴PQ:y=-x-2t,
过M作MG⊥x轴于G,
∴,
∴2PG=GH
∴,即,
∴ ,
∴,
∴M(-3t,t)或M()
当M(-3t,t)时:,
∴
当M()时:,
∴
综上:或
(2)设A(m,0)、B(n,0),
∴m、n为方程x2-bx-c=0的两根,
∴m+n=b,mn=-c,
∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
∵E、F在抛物线上,设、,
设EF:y=kx+b,
∴ ,
∴
∴
∴,令x=m
∴
=
∴AC=,
又∵,
∴tan∠CAG=,
另一方面:过F作FH⊥x轴于H,
∴,,
∴tan∠FBH=
∴tan∠CAG=tan∠FBH
∴∠CAG=∠FBH
∴CG∥BF
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
27、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
【解析】
试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
由题意,
解得,
答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
由题意w=100a+150(200﹣a)=﹣50a+30000,
∵﹣50<0,
∴w随x的增大而减小,
∴当a取最小值,w有最大值,
∵200﹣a≤2a,
∴a≥,
∴当a=67时,w最小=﹣50×67+30000=26650(元),
此时200﹣67=133kg,
答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
相关试卷
这是一份江西省宜春市丰城市重点达标名校2022年中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,有个零件如图放置,它的主视图是等内容,欢迎下载使用。
这是一份江西省丰城市重点达标名校2022年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份江西省丰城市重点达标名校2022年十校联考最后数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,一、单选题,若点A等内容,欢迎下载使用。