2022年辽宁沈阳皇姑区毕业升学考试模拟卷数学卷含解析
展开
这是一份2022年辽宁沈阳皇姑区毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了下列计算正确的是,的相反数是,下列各数等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图是由四个小正方体叠成的一个几何体,它的左视图是( )
A. B. C. D.
2.如果,那么代数式的值为( )
A.1 B.2 C.3 D.4
3.3点40分,时钟的时针与分针的夹角为( )
A.140° B.130° C.120° D.110°
4.下列计算正确的是( )
A.a4+a5=a9 B.(2a2b3)2=4a4b6
C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2
5.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )
A.8 B.10 C.12 D.16
6.将1、、、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是( )
A. B.6 C. D.
7.的相反数是( )
A.2 B.﹣2 C.4 D.﹣
8.下列各数:π,sin30°,﹣ ,其中无理数的个数是( )
A.1个 B.2个 C.3个 D.4个
9.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是( )
A.﹣5 B. C. D.7
10.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( )
A.在⊙O内 B.在⊙O上
C.在⊙O外 D.不能确定
二、填空题(共7小题,每小题3分,满分21分)
11.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.
12.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.
13.将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为____________.
14.计算﹣的结果为_____.
15.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:1;
④S四边形AFOE:S△COD=2:1.
其中正确的结论有_____.(填写所有正确结论的序号)
16.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.
三、解答题(共7小题,满分69分)
18.(10分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
19.(5分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
20.(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
(1)如图1,当旋转角为90°时,求BB′的长;
(2)如图2,当旋转角为120°时,求点O′的坐标;
(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
21.(10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.
22.(10分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
销售时段
销售数量
销售收入
种型号
种型号
第一周
3台
4台
1200元
第二周
5台
6台
1900元
(进价、售价均保持不变,利润=销售收入—进货成本)
(1)求、两种型号的电器的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
23.(12分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?
24.(14分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
(1)抛物线的表达式;
(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.
考点:简单组合体的三视图.
2、A
【解析】
先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.
【详解】
解:∵原式=
=
=
∵3x-4y=0,
∴3x=4y
原式==1
故选:A.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
3、B
【解析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:3点40分时针与分针相距4+=份,
30°×=130,
故选B.
【点睛】
本题考查了钟面角,确定时针与分针相距的份数是解题关键.
4、B
【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.
详解:A、a4与a5不是同类项,不能合并,故本选项错误;
B、(2a2b3)2=4a4b6,故本选项正确;
C、-2a(a+3)=-2a2-6a,故本选项错误;
D、(2a-b)2=4a2-4ab+b2,故本选项错误;
故选:B.
点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.
5、B
【解析】
根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故选C.
“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.
6、B
【解析】
根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.
【详解】
第一排1个数,第二排2个数.第三排3个数,第四排4个数,
…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,
根据数的排列方法,每四个数一个轮回,
由此可知:(1,5)表示第1排从左向右第5个数是,
(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,
第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是,
则(1,5)与(13,1)表示的两数之积是1.
故选B.
7、A
【解析】
分析:根据只有符号不同的两个数是互为相反数解答即可.
详解:的相反数是,即2.
故选A.
点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
8、B
【解析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.
【详解】
sin30°=,=3,故无理数有π,-,
故选:B.
【点睛】
本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
9、C
【解析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
【详解】
把(-2,0)和(0,1)代入y=kx+b,得
,
解得
所以,一次函数解析式y=x+1,
再将A(3,m)代入,得
m=×3+1=.
故选C.
【点睛】
本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
10、B.
【解析】
试题解析:∵OP=5,
∴根据点到圆心的距离等于半径,则知点在圆上.
故选B.
考点:1.点与圆的位置关系;2.坐标与图形性质.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.
【详解】
∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,
∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.
故答案为.
12、(,1)或(﹣,1)
【解析】
根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可
【详解】
根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.
当y=1时, x1-1=1,解得x=±
当y=-1时, x1-1=-1,方程无解
故P点的坐标为()或(-)
【点睛】
此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.
13、
【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B′的坐标.
【详解】
解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵点C的坐标为(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,
∴B′点的坐标为
【点睛】
此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.
14、.
【解析】
根据同分母分式加减运算法则化简即可.
【详解】
原式=,
故答案为.
【点睛】
本题考查了分式的加减运算,熟记运算法则是解题的关键.
15、①②④.
【解析】
根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴=,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正确,
∵OA∥CD,
∴,
∴,故③错误,
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴S四边形AFOE:S△COD=2:1.故④正确.
故答案是:①②④.
【点睛】
此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
16、1
【解析】
由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
【详解】
解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
∴△=2,
∴b2﹣4ac=22﹣4×1×m=2;
∴m=1.
故答案为1.
【点睛】
本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
17、1
【解析】
试题分析:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.
三、解答题(共7小题,满分69分)
18、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.
【解析】
(1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.
(1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;
(3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.
【详解】
解:(1)连接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直径,
∴∠ADB=90°,
∴∠CDB=90°.
∵E为BC的中点,
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB为直径的⊙O的切线,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切线;
(1)∵S1=5 S1
∴S△ADB=1S△CDB
∴
∵△BDC∽△ADB
∴
∴DB1=AD•DC
∴
∴tan∠BAC==.
(3)∵tan∠BAC=
∴,得BC=AB
∵E为BC的中点
∴BE=AB
∵AE=3,
∴在Rt△AEB中,由勾股定理得
,解得AB=4
故⊙O的半径R=AB=1.
【点睛】
本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.
19、﹣x+1,2.
【解析】
先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
【详解】
原式=(x﹣2)÷(﹣)
=(x﹣2)÷
=(x﹣2)•
=﹣x+1,
当x=﹣1时,原式=1+1=2.
【点睛】
本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
20、(1)5;(2)O'(,);(3)P'(,).
【解析】
(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
【详解】
解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;
(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();
(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
∵点C与点A关于y轴对称,∴C(﹣3,0).
∵O'(),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.
∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().
【点睛】
本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.
21、见解析
【解析】
(1)如图:
(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.
22、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.
【解析】
(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;
(2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;
(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.
【详解】
解:(1)设A型电器销售单价为x元,B型电器销售单价y元,
则 ,
解得:,
答:A型电器销售单价为200元,B型电器销售单价150元;
(2)设A型电器采购a台,
则160a+120(50−a)≤7500,
解得:a≤,
则最多能采购37台;
(3)设A型电器采购a台,
依题意,得:(200−160)a+(150−120)(50−a)>1850,
解得:a>35,
则35<a≤,
∵a是正整数,
∴a=36或37,
方案一:采购A型36台B型14台;
方案二:采购A型37台B型13台.
【点睛】
本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
23、(1)60;(2)20,20;(3)38000
【解析】
(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;
(2)先确定各组的人数,然后根据中位数和众数的定义求解;
(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.
【详解】
(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);
(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.
∵20出现次数最多,∴众数为20元;
∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;
(3)2000=38000(元),∴估算全校学生共捐款38000元.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.
24、(1);(2).
【解析】
(1)根据待定系数法即可求解;
(2)根据题意知,根据三角形面积公式列方程即可求解.
【详解】
(1)根据题意得:,
解得:,
抛物线的表达式为:;
(2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
∴抛物线的对称轴为直线,
∵抛物线与轴交于点两点且点在点左侧,
∴的横坐标为:
∴,
令,则,
解得:,
令,则,
∴点的坐标分别为,,点的坐标为,
∴,
∵,
∴,即,
解得:或,
∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
∴抛物线的表达式为或.
【点睛】
本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.
相关试卷
这是一份武汉市部分学校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,魏晋时期的数学家刘徽首创割圆术,二次函数y=等内容,欢迎下载使用。
这是一份陕西省户县2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
这是一份2022年山东菏泽定陶区毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。