搜索
    上传资料 赚现金
    英语朗读宝

    2022年江西育华校中考冲刺卷数学试题含解析

    2022年江西育华校中考冲刺卷数学试题含解析第1页
    2022年江西育华校中考冲刺卷数学试题含解析第2页
    2022年江西育华校中考冲刺卷数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江西育华校中考冲刺卷数学试题含解析

    展开

    这是一份2022年江西育华校中考冲刺卷数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,计算3a2-a2的结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一个多边形内角和是外角和的2倍,它是( )
    A.五边形 B.六边形 C.七边形 D.八边形
    2.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是(  )

    A. B. C. D.
    3.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
    A.20 B.24 C.28 D.30
    4.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )

    A. B. C. D.
    5.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(  )

    A.7 B.10 C.11 D.12
    6.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    7.按如图所示的方法折纸,下面结论正确的个数( )
    ①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.

    A.1 个 B.2 个 C.1 个 D.4 个
    8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
    ①二次函数的最大值为a+b+c;
    ②a﹣b+c<0;
    ③b2﹣4ac<0;
    ④当y>0时,﹣1<x<3,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    9.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )

    A.甲的速度是4km/h B.乙的速度是10km/h
    C.乙比甲晚出发1h D.甲比乙晚到B地3h
    10.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是(  )

    A.3 B.4 C.5 D.6
    11.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )

    A. B.
    C. D.
    12.一元二次方程x2+2x﹣15=0的两个根为(  )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知且,则=__________.
    14.计算:的结果是_____.
    15.已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是_____.
    16.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.
    17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.

    18.计算:=____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
    (1)求抛物线的表达式;
    (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
    (3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

    20.(6分)在平面直角坐标系 xOy 中,抛物线 y=ax2﹣4ax+3a﹣2(a≠0)与 x轴交于 A,B 两(点 A 在点 B 左侧).
    (1)当抛物线过原点时,求实数 a 的值;
    (2)①求抛物线的对称轴;
    ②求抛物线的顶点的纵坐标(用含 a 的代数式表示);
    (3)当 AB≤4 时,求实数 a 的取值范围.
    21.(6分)如图所示,一艘轮船位于灯塔P的北偏东方向与灯塔Р的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔Р的距离.(结果保留根号)

    22.(8分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
    23.(8分)如图,已知是的直径,点、在上,且,过点作,垂足为.

    求的长;
    若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.
    24.(10分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
    分组
    频数
    4.0≤x<4.2
    2
    4.2≤x<4.4
    3
    4.4≤x<4.6
    5
    4.6≤x<4.8
    8
    4.8≤x<5.0
    17
    5.0≤x<5.2
    5
    (1)求活动所抽取的学生人数;
    (2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
    (3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.

    25.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为   件,扇形统计图中D厂家对应的圆心角为   ;抽查C厂家的合格零件为   件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.

    26.(12分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
    (1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
    (2)求两次摸出的球上的数字和为偶数的概率.
    27.(12分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
    (1)证明与推断:
    ①求证:四边形CEGF是正方形;
    ②推断:的值为   :
    (2)探究与证明:
    将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
    (3)拓展与运用:
    正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=   .




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
    【详解】
    设这个多边形是n边形,根据题意得:
    (n﹣2)×180°=2×310°
    解得:n=1.
    故选B.
    【点睛】
    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
    2、B
    【解析】
    连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
    【详解】
    解,连结OB,

    ∵、是的切线,
    ∴,,则,
    ∵四边形APBO的内角和为360°,即,
    ∴,
    又∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
    3、D
    【解析】
    试题解析:根据题意得=30%,解得n=30,
    所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
    故选D.
    考点:利用频率估计概率.
    4、C
    【解析】
    根据平行四边形的性质和圆周角定理可得出答案.
    【详解】
    根据平行四边形的性质可知∠B=∠AOC,
    根据圆内接四边形的对角互补可知∠B+∠D=180°,
    根据圆周角定理可知∠D=∠AOC,
    因此∠B+∠D=∠AOC+∠AOC=180°,
    解得∠AOC=120°,
    因此∠ADC=60°.
    故选C
    【点睛】
    该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
    5、B
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=4,CD=AB=6,
    ∵由作法可知,直线MN是线段AC的垂直平分线,
    ∴AE=CE,
    ∴AE+DE=CE+DE=AD,
    ∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
    故选B.
    6、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    7、C
    【解析】
    ∵∠1+∠1=∠2,∠1+∠1+∠2=180°,
    ∴∠1+∠1=∠2=90°,故①正确;
    ∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;
    ∵∠1+∠1=90°,∠1+∠BAE=90°,
    ∴∠1=∠BAE,
    又∵∠B=∠C,
    ∴△ABE∽△ECF.故③,④正确;
    故选C.
    8、B
    【解析】
    分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
    详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
    ∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
    ②当x=﹣1时,a﹣b+c=0,故②错误;
    ③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
    ④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
    ∴A(3,0),
    故当y>0时,﹣1<x<3,故④正确.
    故选B.
    点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
    9、C
    【解析】
    甲的速度是:20÷4=5km/h;
    乙的速度是:20÷1=20km/h;
    由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
    故选C.
    10、C
    【解析】
    根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
    【详解】
    解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
    ∴BE=CE=BC=2,
    又∵D是AB中点,
    ∴BD=AB=,
    ∴DE是△ABC的中位线,
    ∴DE=AC=,
    ∴△BDE的周长为BD+DE+BE=++2=5,
    故选C.
    【点睛】
    本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
    11、C
    【解析】
    根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
    【详解】
    解:∵DE∥BC,
    ∴=,BD≠BC,
    ∴≠,选项A不正确;
    ∵DE∥BC,EF∥AB,
    ∴=,EF=BD,=,
    ∵≠,
    ∴≠,选项B不正确;
    ∵EF∥AB,
    ∴=,选项C正确;
    ∵DE∥BC,EF∥AB,
    ∴=,=,CE≠AE,
    ∴≠,选项D不正确;
    故选C.
    【点睛】
    本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
    12、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    分析:根据相似三角形的面积比等于相似比的平方求解即可.
    详解:∵△ABC∽△A′B′C′,
    ∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,
    ∴AB:A′B′=1:.
    点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.
    14、
    【解析】
    试题分析:先进行二次根式的化简,然后合并同类二次根式即可,

    考点:二次根式的加减
    15、m>1.
    【解析】
    分析:根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.
    详解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.
    故答案为m>1.
    点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.
    16、1
    【解析】
    试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.
    考点:一元二次方程的解.
    17、9n+1.
    【解析】
    ∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
    ∴正方形和等边三角形的和=6+6=12=9+1;
    ∵第2个图由11个正方形和10个等边三角形组成,
    ∴正方形和等边三角形的和=11+10=21=9×2+1;
    ∵第1个图由16个正方形和14个等边三角形组成,
    ∴正方形和等边三角形的和=16+14=10=9×1+1,
    …,
    ∴第n个图中正方形和等边三角形的个数之和=9n+1.
    故答案为9n+1.
    18、1
    【解析】
    根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.
    【详解】
    解:∵12=21,
    ∴=1,
    故答案为:1.
    【点睛】
    本题考查了算术平方根的定义,先把化简是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)抛物线的解析式为:y=﹣x1+x+1
    (1)存在,P1(,2),P1(,),P3(,﹣)
    (3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
    【解析】
    试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
    (1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
    (3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
    试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
    解得:,
    ∴抛物线的解析式为:y=﹣x1+x+1;
    (1)∵y=﹣x1+x+1,

    ∴y=﹣(x﹣)1+,
    ∴抛物线的对称轴是x=.
    ∴OD=.
    ∵C(0,1),
    ∴OC=1.
    在Rt△OCD中,由勾股定理,得
    CD=.
    ∵△CDP是以CD为腰的等腰三角形,
    ∴CP1=CP1=CP3=CD.
    作CH⊥x轴于H,
    ∴HP1=HD=1,
    ∴DP1=2.
    ∴P1(,2),P1(,),P3(,﹣);
    (3)当y=0时,0=﹣x1+x+1
    ∴x1=﹣1,x1=2,
    ∴B(2,0).
    设直线BC的解析式为y=kx+b,由图象,得

    解得:,
    ∴直线BC的解析式为:y=﹣x+1.
    如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
    ∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
    ∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
    =+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
    =﹣a1+2a+(0≤x≤2).
    =﹣(a﹣1)1+
    ∴a=1时,S四边形CDBF的面积最大=,
    ∴E(1,1).

    考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值
    20、(1)a=;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a 的范围为 a<﹣2 或 a≥.
    【解析】
    (1)把原点坐标代入 y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设 A(m,1),B(n,1),利用抛物线与 x 轴的交点问题,则 m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,利用判别式的意义解得 a>1 或 a<﹣2,再利用根与系数的关系得到 m+n=4,mn= ,然后根据完全平方公式利用 n﹣m≤4 得到(m+n)2﹣4mn≤16,所以 42﹣4•≤16,接着解关于a 的不等式,最后确定a的范围.
    【详解】
    (1)把(1,1)代入 y=ax2﹣4ax+3a﹣2 得 3a﹣2=1,解得 a=;
    (2)①y=a(x﹣2)2﹣a﹣2, 抛物线的对称轴为直线 x=2;
    ②抛物线的顶点的纵坐标为﹣a﹣2;
    (3)设 A(m,1),B(n,1),
    ∵m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,
    ∴△=16a2﹣4a(3a﹣2)>1,解得 a>1 或 a<﹣2,
    ∴m+n=4,mn=, 而 n﹣m≤4,
    ∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,
    ∴42﹣4• ≤16,
    即≥1,解得 a≥或 a<1.
    ∴a 的范围为 a<﹣2 或 a≥.
    【点睛】
    本题考查了抛物线与 x 轴的交点:把求二次函数 y=ax2+bx+c(a,b,c 是常数,a≠1)与 x 轴的交点坐标问题转化为解关于 x 的一元二次方程.也考查了二次函数的性质.
    21、海里
    【解析】
    过点P作,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB.
    【详解】
    解:如图,过点P作,垂足为点C.

    ∴,,海里.
    在中,,
    ∴(海里).
    在中,,
    ∴(海里).
    ∴此时轮船所在的B处与灯塔P的距离是海里.
    【点睛】
    解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    22、1人
    【解析】
    解:设九年级学生有x人,根据题意,列方程得:
    ,整理得0.8(x+88)=x,解之得x=1.
    经检验x=1是原方程的解.
    答:这个学校九年级学生有1人.
    设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可.
    23、(1)OE=;(2)阴影部分的面积为
    【解析】
    (1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.
    【详解】
    解:(1) ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵OE⊥AC,
    ∴OE // BC,
    又∵点O是AB中点,
    ∴OE是△ABC的中位线,
    ∵∠D=60°,
    ∴∠B=60°,
    又∵AB=6,
    ∴BC=AB·cos60°=3,
    ∴OE= BC=;
    (2)连接OC,
    ∵∠D=60°,
    ∴∠AOC=120°,
    ∵OF⊥AC,
    ∴AE=CE,=,
    ∴∠AOF=∠COF=60°,
    ∴△AOF为等边三角形,
    ∴AF=AO=CO,
    ∵在Rt△COE与Rt△AFE中,

    ∴△COE≌△AFE,
    ∴阴影部分的面积=扇形FOC的面积,
    ∵S扇形FOC==π.
    ∴阴影部分的面积为π.

    【点睛】
    本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.
    24、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好
    【解析】
    【分析】(1)求出频数之和即可;
    (2)根据合格率=合格人数÷总人数×100%即可得解;
    (3)从两个不同的角度分析即可,答案不唯一.
    【详解】(1)∵频数之和=3+6+7+9+10+5=40,
    ∴所抽取的学生人数为40人;
    (2)活动前该校学生的视力达标率=×100%=37.5%;
    (3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;
    ②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.
    【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.
    25、(1)500, 90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=.
    【解析】
    试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;
    (2)C厂的零件数=总数×所占比例;
    (3)计算出各厂的合格率后,进一步比较得出答案即可;
    (4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
    试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,
    D厂的零件数=2000×25%=500件;
    D厂家对应的圆心角为360°×25%=90°;
    (2)C厂的零件数=2000×20%=400件,
    C厂的合格零件数=400×95%=380件,
    如图:

    (3)A厂家合格率=630÷(2000×35%)=90%,
    B厂家合格率=370÷(2000×20%)=92.5%,
    C厂家合格率=95%,
    D厂家合格率470÷500=94%,
    合格率排在前两名的是C、D两个厂家;
    (4)根据题意画树形图如下:

    共有12种情况,选中C、D的有2种,
    则P(选中C、D)==.
    考点:1.条形统计图;2.扇形统计图;3. 树状图法.
    26、(1)画树状图得:

    则共有9种等可能的结果;
    (2)两次摸出的球上的数字和为偶数的概率为:.
    【解析】
    试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
    (2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
    试题解析:(1)画树状图得:

    则共有9种等可能的结果;
    (2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
    ∴两次摸出的球上的数字和为偶数的概率为:.
    考点:列表法与树状图法.
    27、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
    【解析】
    (1)①由、结合可得四边形CEGF是矩形,再由即可得证;
    ②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
    (2)连接CG,只需证∽即可得;
    (3)证∽得,设,知,由得、、,由可得a的值.
    【详解】
    (1)①∵四边形ABCD是正方形,
    ∴∠BCD=90°,∠BCA=45°,
    ∵GE⊥BC、GF⊥CD,
    ∴∠CEG=∠CFG=∠ECF=90°,
    ∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
    ∴EG=EC,
    ∴四边形CEGF是正方形;
    ②由①知四边形CEGF是正方形,
    ∴∠CEG=∠B=90°,∠ECG=45°,
    ∴,GE∥AB,
    ∴,
    故答案为;
    (2)连接CG,

    由旋转性质知∠BCE=∠ACG=α,
    在Rt△CEG和Rt△CBA中,
    =、=,
    ∴=,
    ∴△ACG∽△BCE,
    ∴,
    ∴线段AG与BE之间的数量关系为AG=BE;
    (3)∵∠CEF=45°,点B、E、F三点共线,
    ∴∠BEC=135°,
    ∵△ACG∽△BCE,
    ∴∠AGC=∠BEC=135°,
    ∴∠AGH=∠CAH=45°,
    ∵∠CHA=∠AHG,
    ∴△AHG∽△CHA,
    ∴,
    设BC=CD=AD=a,则AC=a,
    则由得,
    ∴AH=a,
    则DH=AD﹣AH=a,CH==a,
    ∴由得,
    解得:a=3,即BC=3,
    故答案为3.
    【点睛】
    本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.

    相关试卷

    江西省育华学校2022年中考数学全真模拟试卷含解析:

    这是一份江西省育华学校2022年中考数学全真模拟试卷含解析,共19页。试卷主要包含了函数y=自变量x的取值范围是等内容,欢迎下载使用。

    江西省育华校2022年中考二模数学试题含解析:

    这是一份江西省育华校2022年中考二模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    江西省南昌育华校2021-2022学年中考数学模拟精编试卷含解析:

    这是一份江西省南昌育华校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,-5的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map