


2022年江苏省无锡锡北片中考联考数学试卷含解析
展开
这是一份2022年江苏省无锡锡北片中考联考数学试卷含解析,共22页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4 B.4.5 C.5 D.5.5
2.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:
①这栋居民楼共有居民140人
②每周使用手机支付次数为28~35次的人数最多
③有的人每周使用手机支付的次数在35~42次
④每周使用手机支付不超过21次的有15人
其中正确的是( )
A.①② B.②③ C.③④ D.④
3.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为( )
A.1 B.2 C.3 D.6
4.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是
A.4 B. C.5 D.6
5.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是
A. B. C. D.
6.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
7.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
步数(万步)
1.0
1.2
1.1
1.4
1.3
天数
3
3
5
7
12
在每天所走的步数这组数据中,众数和中位数分别是( )
A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4
8.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105
9.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
A.1 B.1.5 C.2 D.2.5
10.若55+55+55+55+55=25n,则n的值为( )
A.10 B.6 C.5 D.3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.函数y=中自变量x的取值范围是________,若x=4,则函数值y=________.
12.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.
(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.
(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =__.
13.方程的解为 .
14.计算:的值是______________.
15.已知,,,是成比例的线段,其中,,,则_______.
16.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.
三、解答题(共8题,共72分)
17.(8分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
0
1
2
3
3
6
说明:补全表格时相关数据保留一位小数
建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.
18.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
(Ⅰ)求二次函数的解析式及点A,B的坐标;
(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.
19.(8分)先化简,再求值:÷,其中m是方程x2+2x-3=0的根.
20.(8分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.
月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;
(2)求,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.
21.(8分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.
(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;
(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.
22.(10分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
23.(12分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?
24.如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
甲
乙
丙
单价(元/米2)
(1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.
故选B
考点:平行线分线段成比例
2、B
【解析】
根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.
【详解】
解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;
②每周使用手机支付次数为28~35次的人数最多,此结论正确;
③每周使用手机支付的次数在35~42次所占比例为,此结论正确;
④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;
故选:B.
【点睛】
此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据
3、B
【解析】
先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.
【详解】
解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),
则B(c,b),E(c, ),
设D(x,y),
∵D和E都在反比例函数图象上,
∴xy=k,
即 ,
∵四边形ODBC的面积为3,
∴
∴
∴bc=4
∴
∵k>0
∴ 解得k=2,
故答案为:B.
【点睛】
本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.
4、A
【解析】
作于利用直角三角形30度角的性质即可解决问题.
【详解】
解:作于H.
垂直平分线段AB,
,
,
,
,
,
,
,,
,
故选A.
【点睛】
本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
5、B
【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
【详解】
添加,根据AAS能证明≌,故A选项不符合题意.
B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;
C.添加,可得,根据AAS能证明≌,故C选项不符合题意;
D.添加,可得,根据AAS能证明≌,故D选项不符合题意,
故选B.
【点睛】
本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
6、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
7、B
【解析】
在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
【详解】
在这组数据中出现次数最多的是1.1,即众数是1.1.
要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
故选B.
【点睛】
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
8、A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份2023-2024学年江苏省无锡市锡山区锡北片七年级(上)期中考试数学试卷(含解析),共10页。试卷主要包含了下面各组式子中,属于同类项的是,下列式子中,相反数是,下列计算正确的是,多项式去括号的结果是,现有四种说法,如果那么代数式的值是,规定两种变换等内容,欢迎下载使用。
这是一份江苏省无锡市锡山区(锡北片)重点中学2022年中考试题猜想数学试卷含解析,共15页。试卷主要包含了答题时请按要求用笔,二元一次方程组的解为等内容,欢迎下载使用。
这是一份江苏省无锡锡北片达标名校2022年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了单项式2a3b的次数是,-3的相反数是,下列图形中一定是相似形的是,下列说法错误的是等内容,欢迎下载使用。