终身会员
搜索
    上传资料 赚现金
    2022年辽宁省抚顺市新宾县重点达标名校中考数学四模试卷含解析
    立即下载
    加入资料篮
    2022年辽宁省抚顺市新宾县重点达标名校中考数学四模试卷含解析01
    2022年辽宁省抚顺市新宾县重点达标名校中考数学四模试卷含解析02
    2022年辽宁省抚顺市新宾县重点达标名校中考数学四模试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年辽宁省抚顺市新宾县重点达标名校中考数学四模试卷含解析

    展开
    这是一份2022年辽宁省抚顺市新宾县重点达标名校中考数学四模试卷含解析,共19页。试卷主要包含了tan45º的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为(  )

    A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
    2.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有(   )和黑子.

    A.37 B.42 C.73 D.121
    3.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
    A. B.
    C. D.
    4.tan45º的值为( )
    A. B.1 C. D.
    5.一个几何体的三视图如图所示,则该几何体的表面积是(  )

    A.24+2π B.16+4π C.16+8π D.16+12π
    6.一个几何体的三视图如图所示,那么这个几何体是( )

    A. B. C. D.
    7.在△ABC中,若=0,则∠C的度数是( )
    A.45° B.60° C.75° D.105°
    8.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是(  )

    A.20,20 B.30,20 C.30,30 D.20,30
    9.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )

    A.1个 B.2个 C.3个 D.4
    10.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则(  )

    A.DE=EB B.DE=EB C.DE=DO D.DE=OB
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_____人.

    12.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.
    13.已知点A,B的坐标分别为(﹣2,3)、(1,﹣2),将线段AB平移,得到线段A′B′,其中点A与点A′对应,点B与点B′对应,若点A′的坐标为(2,﹣3),则点B′的坐标为________.
    14.分解因式:x2y﹣6xy+9y=_____.
    15.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_____.

    16.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)

    18.(8分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.

    19.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
    求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
    20.(8分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
    21.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.

    22.(10分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
    如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).

    (1)当x为何值时,OP∥AC;
    (2)求y与x之间的函数关系式,并确定自变量x的取值范围;
    (3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
    23.(12分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
    (1)求证:EF是⊙O的切线;
    (2)求证:=4BP•QP.

    24.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    直接利用圆周角定理结合三角形的外角的性质即可得.
    【详解】
    连接BE,如图所示:

    ∵∠ACB=∠AEB,
    ∠AEB>∠D,
    ∴∠C>∠D.
    故选:A.
    【点睛】
    考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
    2、C
    【解析】
    解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C.
    点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
    3、C
    【解析】
    根据全等三角形的判定定理进行判断.
    【详解】
    解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    C、

    如图1,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
    所以不能判定两个小三角形全等,故本选项符合题意;
    D、

    如图2,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    ∵BD=EC=2,∠B=∠C,
    ∴△BDE≌△CEF,
    所以能判定两个小三角形全等,故本选项不符合题意;
    由于本题选择可能得不到全等三角形纸片的图形,
    故选C.
    【点睛】
    本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
    4、B
    【解析】
    解:根据特殊角的三角函数值可得tan45º=1,
    故选B.
    【点睛】
    本题考查特殊角的三角函数值.
    5、D
    【解析】
    根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
    【详解】
    该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,
    故选:D.
    【点睛】
    本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
    6、C
    【解析】
    由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
    7、C
    【解析】
    根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
    【详解】
    由题意,得 cosA=,tanB=1,
    ∴∠A=60°,∠B=45°,
    ∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
    故选C.
    8、C
    【解析】
    根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.
    【详解】
    捐款30元的人数为20人,最多,则众数为30,
    中间两个数分别为30和30,则中位数是30,
    故选C.
    【点睛】
    本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.
    9、B
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①抛物线与y轴交于负半轴,则c<1,故①正确;
    ②对称轴x1,则2a+b=1.故②正确;
    ③由图可知:当x=1时,y=a+b+c<1.故③错误;
    ④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
    综上所述:正确的结论有2个.
    故选B.
    【点睛】
    本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    10、D
    【解析】
    解:连接EO.

    ∴∠B=∠OEB,
    ∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
    ∴∠B+∠D=3∠D,
    ∴∠D+∠DOE+∠D=3∠D,
    ∴∠DOE=∠D,
    ∴ED=EO=OB,
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例.
    【详解】
    估计该校男生的身高在170cm-175cm之间的人数约为300×=1(人),
    故答案为1.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    12、.
    【解析】
    根据合数定义,用合数的个数除以数的总数即为所求的概率.
    【详解】
    ∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是.
    故答案为:.
    【点睛】
    本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键.
    13、(5,﹣8)
    【解析】
    各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B′的坐标.
    【详解】
    由A(-2,3)的对应点A′的坐标为(2,-13),
    坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,
    ∴点B′的横坐标为1+4=5;纵坐标为-2-6=-8;
    即所求点B′的坐标为(5,-8).
    故答案为(5,-8)
    【点睛】
    此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
    14、y(x﹣3)2
    【解析】
    本题考查因式分解.
    解答:.
    15、5π
    【解析】
    根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.
    【详解】
    解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,
    然后沿着弧O1O2旋转圆的周长,
    则圆心O运动路径的长度为:×2π×5=5π,
    故答案为5π.

    【点睛】
    本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.
    16、2
    【解析】
    解:这组数据的平均数为2,
    有 (2+2+0-2+x+2)=2,
    可求得x=2.
    将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
    其平均数即中位数是(2+2)÷2=2.
    故答案是:2.

    三、解答题(共8题,共72分)
    17、3+3.5
    【解析】
    延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.
    【详解】
    如图,延长ED交BC延长线于点F,则∠CFD=90°,

    ∵tan∠DCF=i=,
    ∴∠DCF=30°,
    ∵CD=4,
    ∴DF=CD=2,CF=CDcos∠DCF=4×=2,
    ∴BF=BC+CF=2+2=4,
    过点E作EG⊥AB于点G,
    则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,
    又∵∠AED=37°,
    ∴AG=GEtan∠AEG=4•tan37°,
    则AB=AG+BG=4•tan37°+3.5=3+3.5,
    故旗杆AB的高度为(3+3.5)米.
    考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题
    18、证明见解析.
    【解析】
    【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.
    【详解】∵AB∥CD,∴∠A=∠D,
    ∵CE∥BF,∴∠AHB=∠DGC,
    在∆ABH和∆DCG中,

    ∴∆ABH≌∆DCG(AAS),∴AH=DG,
    ∵AH=AG+GH,DG=DH+GH,∴AG=HD.
    【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
    19、(1)3,补图详见解析;(2)
    【解析】
    (1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数
    (2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可
    【详解】
    由扇形图可以看到发箴言三条的有3名学生且占,
    故该班团员人数为:
    (人),
    则发4条箴言的人数为:(人),
    所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).

    (2)画树形图如下:

    由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.
    【点睛】
    此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键
    20、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
    (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
    【详解】
    (1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
    根据题意得:,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    ∴x+2=1.
    答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
    (2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
    根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
    解得:m≤2.
    答:这所学校最多可购买2个乙种足球.
    【点睛】
    本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.
    21、(1)点B的坐标是(-5,-4);直线AB的解析式为:
    (2)四边形CBED是菱形.理由见解析
    【解析】
    (1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
    (2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
    【详解】
    解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
    得. ∴点B的坐标是(-5,-4)
    设直线AB的解析式为,
    将 A(3,)、B(-5,-4)代入得,
    , 解得:.
    ∴直线AB的解析式为:
    (2)四边形CBED是菱形.理由如下:
    点D的坐标是(3,0),点C的坐标是(-2,0).
    ∵ BE∥轴, ∴点E的坐标是(0,-4).
    而CD =5, BE=5,且BE∥CD.
    ∴四边形CBED是平行四边形
    在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
    ∴□CBED是菱形
    22、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
    【解析】
    (1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.
    (2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.
    (3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.
    【详解】
    解:(1)∵Rt△EFG∽Rt△ABC
    ∴,即,
    ∴FG==3cm
    ∵当P为FG的中点时,OP∥EG,EG∥AC
    ∴OP∥AC
    ∴x==×3=1.5(s)
    ∴当x为1.5s时,OP∥AC.
    (2)在Rt△EFG中,由勾股定理得EF=5cm
    ∵EG∥AH
    ∴△EFG∽△AFH
    ∴,
    ∴AH=(x+5),FH=(x+5)
    过点O作OD⊥FP,垂足为D

    ∵点O为EF中点
    ∴OD=EG=2cm
    ∵FP=3﹣x
    ∴S四边形OAHP=S△AFH﹣S△OFP
    =•AH•FH﹣•OD•FP
    =•(x+5)•(x+5)﹣×2×(3﹣x)
    =x2+x+3(0<x<3).
    (3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1
    则S四边形OAHP=×S△ABC
    ∴x2+x+3=××6×8
    ∴6x2+85x﹣250=0
    解得x1=,x2=﹣(舍去)
    ∵0<x<3
    ∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
    【点睛】
    本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.
    23、(1)证明见解析;(2)证明见解析.
    【解析】
    试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
    (2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
    试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
    (2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.

    考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
    24、(1)见解析;(2)EC=1.
    【解析】
    (1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;
    (2)根据解直角三角形和等边三角形的性质即可得到结论.
    【详解】
    (1)∵AB=AC,
    ∴∠B=∠C,
    ∵FE⊥BC,
    ∴∠F+∠C=90°,∠BDE+∠B=90°,
    ∴∠F=∠BDE,
    而∠BDE=∠FDA,
    ∴∠F=∠FDA,
    ∴AF=AD,
    ∴△ADF是等腰三角形;
    (2)∵DE⊥BC,
    ∴∠DEB=90°,
    ∵∠B=60°,BD=1,
    ∴BE=BD=2,
    ∵AB=AC,
    ∴△ABC是等边三角形,
    ∴BC=AB=AD+BD=6,
    ∴EC=BC﹣BE=1.
    【点睛】
    本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.

    相关试卷

    2023年辽宁省抚顺市新宾县中考数学模拟试卷(四)(含解析): 这是一份2023年辽宁省抚顺市新宾县中考数学模拟试卷(四)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    辽宁省抚顺市重点达标名校2022年中考五模数学试题含解析: 这是一份辽宁省抚顺市重点达标名校2022年中考五模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022届山西省蒲县重点达标名校中考数学四模试卷含解析: 这是一份2022届山西省蒲县重点达标名校中考数学四模试卷含解析,共17页。试卷主要包含了下列算式中,结果等于x6的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map