2022年江苏省无锡市江阴市华士片中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
次序
第一次
第二次
第三次
第四次
第五次
甲命中的环数(环)
6
7
8
6
8
乙命中的环数(环)
5
10
7
6
7
根据以上数据,下列说法正确的是( )
A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
C.甲、乙成绩的众数相同 D.甲的成绩更稳定
2.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
A. B. C. D.
3.某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )
A. B.
C. D.
4.-5的相反数是( )
A.5 B. C. D.
5.若关于的一元二次方程的一个根是0,则的值是( )
A.1 B.-1 C.1或-1 D.
6.若与 互为相反数,则x的值是( )
A.1 B.2 C.3 D.4
7.在中,,,下列结论中,正确的是( )
A. B.
C. D.
8.某商品价格为元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )
A.0.96元 B.0.972元 C.1.08元 D.元
9.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )
A. B. C. D.
10.人的头发直径约为0.00007m,这个数据用科学记数法表示( )
A.0.7×10﹣4 B.7×10﹣5 C.0.7×104 D.7×105
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_____秒钟.
12.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.
13.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.
14.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.
15.分式方程=1的解为_________.
16.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.
三、解答题(共8题,共72分)
17.(8分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈
18.(8分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
19.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.
20.(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.
21.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
22.(10分)计算:+(﹣ )﹣1+|1﹣|﹣4sin45°.
23.(12分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?
(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
24.已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
【详解】
把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
∴甲、乙成绩的中位数相同,故选项B错误;
根据表格中数据可知,甲的众数是8环,乙的众数是7环,
∴甲、乙成绩的众数不同,故选项C错误;
甲命中的环数的平均数为:(环),
乙命中的环数的平均数为:(环),
∴甲的平均数等于乙的平均数,故选项A错误;
甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
因为2.8>0.8,
所以甲的稳定性大,故选项D正确.
故选D.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
2、A
【解析】
本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.
【详解】
设绳子长x尺,木条长y尺,依题意有
.
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
3、D
【解析】
分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.
详解:设2016年的国内生产总值为1,
∵2017年国内生产总值(GDP)比2016年增长了12%,∴2017年的国内生产总值为1+12%;
∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),
∵这两年GDP年平均增长率为x%, ∴2018年的国内生产总值也可表示为:,
∴可列方程为:(1+12%)(1+7%)=.故选D.
点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.
4、A
【解析】
由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
故选A.
5、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
【点睛】
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
6、D
【解析】
由题意得+=0,
去分母3x+4(1-x)=0,
解得x=4.故选D.
7、C
【解析】
直接利用锐角三角函数关系分别计算得出答案.
【详解】
∵,,
∴,
∴,
故选项A,B错误,
∵,
∴,
故选项C正确;选项D错误.
故选C.
【点睛】
此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.
8、B
【解析】
提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.
【详解】
第一次降价后的价格为a×(1-10%)=0.9a元,
第二次降价后的价格为0.9a×(1-10%)=0.81a元,
∴提价20%的价格为0.81a×(1+20%)=0.972a元,
故选B.
【点睛】
本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.
9、B
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
∵a<0,
∴抛物线的开口方向向下,
故第三个选项错误;
∵c<0,
∴抛物线与y轴的交点为在y轴的负半轴上,
故第一个选项错误;
∵a<0、b>0,对称轴为x=>0,
∴对称轴在y轴右侧,
故第四个选项错误.
故选B.
10、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00007m,这个数据用科学记数法表示7×10﹣1.
故选:B.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2.5秒.
【解析】
把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得.
【详解】
解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.
(1)展开前面右面由勾股定理得AB=cm;
(2)展开底面右面由勾股定理得AB==5cm;
所以最短路径长为5cm,用时最少:5÷2=2.5秒.
【点睛】
本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
12、
【解析】
首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
列表得:
第一次
第二次
黑
白
白
黑
黑,黑
白,黑
白,黑
白
黑,白
白,白
白,白
白
黑,白
白,白
白,白
∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,
∴两次都摸到黑球的概率是.
故答案为:.
【点睛】
考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.
13、1
【解析】
根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.
【详解】
解:根据题意得=1%,
解得n=1,
所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.
故答案为1.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
14、1
【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.
解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
∴y=(8-x)x,即y=-x2+8x,
∴当x=- =1时,y取得最大值.
故答案为:1.
15、x=1
【解析】
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
详解:两边都乘以x+4,得:3x=x+4,
解得:x=1,
检验:x=1时,x+4=6≠0,
所以分式方程的解为x=1,
故答案为:x=1.
点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
16、
【解析】
∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
∵∠CAC′=15°,
∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
∴阴影部分的面积=×5×tan30°×5=.
三、解答题(共8题,共72分)
17、点O到BC的距离为480m.
【解析】
作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.
【详解】
作OM⊥BC于M,ON⊥AC于N,
则四边形ONCM为矩形,
∴ON=MC,OM=NC,
设OM=x,则NC=x,AN=840﹣x,
在Rt△ANO中,∠OAN=45°,
∴ON=AN=840﹣x,则MC=ON=840﹣x,
在Rt△BOM中,BM==x,
由题意得,840﹣x+x=500,
解得,x=480,
答:点O到BC的距离为480m.
【点睛】
本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.
18、(1)图见解析;(2)126°;(3)1.
【解析】
(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
【详解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
将条形统计图补充完整,如图所示.
(2)42÷120×100%×360°=126°.
答:扇形统计图中的A等对应的扇形圆心角为126°.
(3)1500×=1(人).
答:该校学生对政策内容了解程度达到A等的学生有1人.
【点睛】
本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
19、 (1)详见解析;(2)4.
【解析】
试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.
试题解析:
(1)连结OD,
∵AD平分∠BAC,
∴∠DAE=∠DAB,
∵OA=OD,
∴∠ODA=∠DAO,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AC
∴OE⊥DE
∴DE是⊙O的切线;
(2)过点O作OF⊥AC于点F,
∴AF=CF=3,
∴OF=,
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED是矩形,
∴DE=OF=4.
考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.
20、(1)y;(2)yx+1.
【解析】
(1)把A的坐标代入反比例函数的解析式即可求得;
(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.
【详解】
(1)由题意得:k=xy=2×3=6,
∴反比例函数的解析式为y;
(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),
∵反比例函数y的图象经过点B(a,b),
∴b,
∴AD=3,
∴S△ABCBC•ADa(3)=6,
解得a=6,
∴b1,
∴B(6,1),
设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得
,解得:,
所以直线AB的解析式为yx+1.
【点睛】
本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键.
21、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
【解析】
(1)利用列举法,列举所有的可能情况即可;
(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
【详解】
(1)所有可能出现的结果如下:,,,,,,,,共9种;
(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
∴在规划1中,(小黄赢);
红心牌点数是黑桃牌点数的整倍数有4种可能,
∴在规划2中,(小黄赢).
∵,∴小黄要在游戏中获胜,小黄会选择规则1.
【点睛】
考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
22、
【解析】
根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.
【详解】
解:+(﹣)﹣1+|1﹣|﹣1sin15°
=2﹣3+﹣1﹣1×
=2﹣3+﹣1﹣2
=﹣1.
【点睛】
此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.
23、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
【解析】
(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;
(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.
(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.
【详解】
(1)y=300+30(60﹣x)=﹣30x+1.
(2)设每星期利润为W元,
W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.
∴x=55时,W最大值=2.
∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.
(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,
当x=52时,销售300+30×8=540,
当x=58时,销售300+30×2=360,
∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
【点睛】
本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.
24、(1)作图见解析;(2)⊙O的半径为.
【解析】
(1)作出相应的图形,如图所示;
(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
【详解】
解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).
(2)∵AD∥BC,
∴∠DAB+∠CBA=180°.
∵AE与BE分别为∠DAB与∠CBA的平分线,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°.
∵AB为⊙O的直径,点F在⊙O上,
∴∠AFB=90°,∴∠FAG+∠FGA=90°.
∵AE平分∠DAB,
∴∠FAG=∠EAB,∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF==.
∵AE=4,∴AB=5,
∴⊙O的半径为.
【点睛】
此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
江苏省无锡市江阴市华士片2022-2023学年七下数学期末经典模拟试题含答案: 这是一份江苏省无锡市江阴市华士片2022-2023学年七下数学期末经典模拟试题含答案,共6页。试卷主要包含了答题时请按要求用笔,如图1反映的过程是等内容,欢迎下载使用。
江苏省无锡市江阴市长泾片2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省无锡市江阴市长泾片2021-2022学年中考数学全真模拟试题含解析,共17页。试卷主要包含了点A,若二元一次方程组的解为则的值为等内容,欢迎下载使用。
江苏省无锡市江阴市华士片重点中学2022年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省无锡市江阴市华士片重点中学2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了一个正比例函数的图象过点等内容,欢迎下载使用。