


2022年山东省青岛2中达标名校中考五模数学试题含解析
展开
这是一份2022年山东省青岛2中达标名校中考五模数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,如果一次函数y=kx+b等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列各式中,互为相反数的是( )A.和 B.和 C.和 D.和2.下列标志中,可以看作是轴对称图形的是( )A. B. C. D.3.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A. B. C. D.π4.如图,是一个工件的三视图,则此工件的全面积是( )A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm25.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )A.y=(x﹣2)2+1 B.y=(x+2)2+1C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣36.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为( )A.6 B.9 C.11 D.无法计算7.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为( )A.2 B.3 C.4 D.58.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.9.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<010.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).12.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.13.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.14.如图,直线经过、两点,则不等式的解集为_______.15.计算:+=______.16.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.17.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.19.(5分)计算:|﹣1|+(﹣1)2018﹣tan60°20.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.21.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).求n和b的值;求△OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.23.(12分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?24.(14分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. =9,=-9,故和互为相反数,故正确;B. =9,=9,故和不是互为相反数,故错误;C. =-8,=-8,故和不是互为相反数,故错误;D. =8,=8故和不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.2、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.3、A【解析】试题解析:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′-S△ABC==.故选A.考点:1.扇形面积的计算;2.旋转的性质.4、C【解析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长==10,所以此工件的全面积=π62+2π610=96π(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.5、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为6、B【解析】
有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3× ×2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.7、C【解析】
根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析 容易题,失分原因:未掌握通过三视图还原几何体的方法.8、D【解析】
从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,∴D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.9、B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象10、B【解析】
根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.【详解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故选B.【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键. 二、填空题(共7小题,每小题3分,满分21分)11、甲【解析】
根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;12、1.【解析】
由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.【详解】∵BD⊥CD,BD=2,∴S△BCD=BD•CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,则S△AOC=1. 故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.13、3或6【解析】
分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.【详解】设AC和BE相交于点O.当P在OA上时,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴BD=AB=9,OB=OD=BD=.则AO=.在直角△OBP中,OP=.则AP=OA-OP-;当P在OC上时,AP=OA+OP=.故答案是:3或6.【点睛】本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.14、-1<X<2【解析】 经过点A,∴不等式x>kx+b>-2的解集为.15、1.【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=.【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.16、20%.【解析】试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.试题解析:依题意,有:100(1+x)2=144,1+x=±1.2, 解得:x=20%或-2.2(舍去).考点:一元二次方程的应用.17、1.【解析】
直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴设AC=4x,则BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m.故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是. 三、解答题(共7小题,满分69分)18、(1)见解析(2)相切【解析】
(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【详解】(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键.19、1【解析】
原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.20、(1)BD=CD=5;(2)BD=5,BC=5.【解析】
(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【详解】(1)∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如图②,连接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,设垂足为E,∴BE=EC=OB•sin60°=,∴BC=5.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.21、(1)-1;(2);(3)x>1或﹣4<x<0. 【解析】
(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义,这里体现了数形结合的思想.22、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形【解析】
(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.【详解】(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.【点睛】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.23、人【解析】
解:设原计划有x人参加了这次植树活动 依题意得: 解得 x=30人 经检验x=30是原方程式的根 实际参加了这次植树活动1.5x=45人 答实际有45人参加了这次植树活动.24、这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.解答:解:如图,OE⊥AB交AB于点D,则DE=4,AB=16,AD=8,设半径为R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.
相关试卷
这是一份山东省青岛市黄岛区重点达标名校2021-2022学年中考二模数学试题含解析,共23页。试卷主要包含了的倒数是等内容,欢迎下载使用。
这是一份山东省费县达标名校2022年中考数学五模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列四个实数中是无理数的是,已知抛物线c等内容,欢迎下载使用。
这是一份2022年山东省青岛市黄岛区重点达标名校中考数学模试卷含解析,共21页。试卷主要包含了若 || =-,则一定是,的相反数是等内容,欢迎下载使用。
