2022年山东省青岛即墨市中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
2.下列各类数中,与数轴上的点存在一一对应关系的是( )
A.有理数 B.实数 C.分数 D.整数
3.下列运算中,计算结果正确的是( )
A.a2•a3=a6 B.a2+a3=a5 C.(a2)3=a6 D.a12÷a6=a2
4.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为( )
A.y=x+1 B.y=x-1 C.y=x D.y=x-2
5.﹣的绝对值是( )
A.﹣ B.﹣ C. D.
6.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是( )
A.红花、绿花种植面积一定相等
B.紫花、橙花种植面积一定相等
C.红花、蓝花种植面积一定相等
D.蓝花、黄花种植面积一定相等
7.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
8.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
9.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是( )
A.40° B.65° C.70° D.80°
10.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )
A.1 B.m C.m2 D.
11.-2的倒数是( )
A.-2 B. C. D.2
12.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
A.24 B.18 C.12 D.9
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.
14.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.
15.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.
16.函数y=中,自变量x的取值范围是
17.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______
18.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点
(1)MN的长等于_______,
(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)
20.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
21.(6分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.
22.(8分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上
请根据阅读材料,解决下列问题:
如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.
(I)旋转中心是点 ,旋转了 (度);
(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.
23.(8分) (1)计算:|-1|+(2017-π)0-()-1-3tan30°+;
(2)化简:(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.
24.(10分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;
求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
25.(10分)如图,△ABC中,CD是边AB上的高,且.
求证:△ACD∽△CBD;求∠ACB的大小.
26.(12分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
27.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
【详解】
∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
∴抽到有理数的概率是,
故选C.
【点睛】
本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
2、B
【解析】
根据实数与数轴上的点存在一一对应关系解答.
【详解】
实数与数轴上的点存在一一对应关系,
故选:B.
【点睛】
本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.
3、C
【解析】
根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.
【详解】
A、a2•a3=a2+3=a5,故本选项错误;
B、a2+a3不能进行运算,故本选项错误;
C、(a2)3=a2×3=a6,故本选项正确;
D、a12÷a6=a12﹣6=a6,故本选项错误.
故选:C.
【点睛】
本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.
4、A
【解析】向左平移一个单位长度后解析式为:y=x+1.
故选A.
点睛:掌握一次函数的平移.
5、C
【解析】
根据负数的绝对值是它的相反数,可得答案.
【详解】
│-│=,A错误;
│-│=,B错误;││=,D错误;
││=,故选C.
【点睛】
本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
6、C
【解析】
图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
【详解】
解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
故选择C.
【点睛】
本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
7、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
8、C
【解析】
根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
【详解】
对于数据:6,3,4,7,6,0,1,
这组数据按照从小到大排列是:0,3,4,6,6,7,1,
这组数据的平均数是: 中位数是6,
故选C.
【点睛】
本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
9、C
【解析】
根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
【详解】
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=40°,
∴∠BAD=140°,
∵AC平分∠DAB,
∴∠DAC=∠BAD=70°,
∵A∥BC,
∴∠C=∠DAC=70°,
故选C.
【点睛】
本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
10、D
【解析】
本题主要考察二次函数与反比例函数的图像和性质.
【详解】
令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.
【点睛】
巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.
11、B
【解析】
根据倒数的定义求解.
【详解】
-2的倒数是-
故选B
【点睛】
本题难度较低,主要考查学生对倒数相反数等知识点的掌握
12、A
【解析】
【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
【详解】∵E是AC中点,
∵EF∥BC,交AB于点F,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长是4×6=24,
故选A.
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、8。
【解析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:
由函数图象得:进水管每分钟的进水量为:20÷4=5升。
设出水管每分钟的出水量为a升,由函数图象,得,解得:。
∴关闭进水管后出水管放完水的时间为:(分钟)。
14、
【解析】
E、F分别是BC、AC的中点.
,
∠CAB=26°
又
∠CAD =26°
!
15、AC=BD.
【解析】
试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.
试题解析:添加的条件应为:AC=BD.
证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,
∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,
则HG∥EF且HG=EF,
∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,
∴四边形EFGH为菱形.
考点:1.菱形的性质;2.三角形中位线定理.
16、x≥0且x≠1
【解析】
试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得答案.
试题解析:根据题意可得x-1≠0;
解得x≠1;
故答案为x≠1.
考点: 函数自变量的取值范围;分式有意义的条件.
17、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
【解析】
根据图形的旋转和平移性质即可解题.
【详解】
解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
【点睛】
本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
18、3或1
【解析】
由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵∠FBM=∠CBM,
∴∠FBD=∠FDB,
∴FB=FD=12cm,
∵AF=6cm,
∴AD=18cm,
∵点E是BC的中点,
∴CE=BC=AD=9cm,
要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
根据题意得:6-t=9-2t或6-t=2t-9,
解得:t=3或t=1.
故答案为3或1.
【点睛】
本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)见解析.
【解析】
(1)根据勾股定理即可得到结论;
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.
【详解】
(1);
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P
【点睛】
本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.
20、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
【解析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
【详解】
解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
解得 k≥﹣2.
∵k为负整数,
∴k=﹣2,﹣2.
(2)当k=﹣2时,不符合题意,舍去;
当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
【点睛】
本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
21、小王在这两年春节收到的年平均增长率是
【解析】
增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.
【详解】
解:设小王在这两年春节收到的红包的年平均增长率是.
依题意得:
解得(舍去).
答:小王在这两年春节收到的年平均增长率是
【点睛】
本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.
22、B 60
【解析】
分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.
详解:(1)B,60;
(2)补全图形如图所示;
的大小保持不变,
理由如下:设与交于点
∵直线是等边的对称轴
∴,
∵经顺时针旋转后与重合
∴ ,
∴
∴点在线段的垂直平分线上
∵
∴点在线段的垂直平分线上
∴垂直平分,即
∴
点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.
23、(1)-2(2)a+3,7
【解析】
(1)先根据绝对值、零次方、负整数指数幂、立方根的意义和特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;
(2)先根据分式的运算法则把(+)÷化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.
【详解】
(1)原式=-1+1-4-3×+2=-2;
(2)原式=[-]÷
=(-)÷
=×
=a+3,
∵a≠-3,2,3,∴a=4或a=5,
取a=4,则原式=7.
【点睛】
本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.
24、(1)一共调查了300名学生.
(2)
(3)体育部分所对应的圆心角的度数为48°.
(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.
【解析】
(1)用文学的人数除以所占的百分比计算即可得解.
(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.
(3)用体育所占的百分比乘以360°,计算即可得解.
(4)用总人数乘以科普所占的百分比,计算即可得解.
【详解】
解:(1)∵90÷30%=300(名),
∴一共调查了300名学生.
(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.
补全折线图如下:
(3)体育部分所对应的圆心角的度数为:×360°=48°.
(4)∵1800×=1(名),
∴1800名学生中估计最喜爱科普类书籍的学生人数为1.
25、(1)证明见试题解析;(2)90°.
【解析】
试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;
(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.
试题解析:(1)∵CD是边AB上的高,
∴∠ADC=∠CDB=90°,
∵.
∴△ACD∽△CBD;
(2)∵△ACD∽△CBD,
∴∠A=∠BCD,
在△ACD中,∠ADC=90°,
∴∠A+∠ACD=90°,
∴∠BCD+∠ACD=90°,
即∠ACB=90°.
考点:相似三角形的判定与性质.
26、(1);(2)x>1;(3)P(﹣,0)或(,0)
【解析】
分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
∴A(1,3),
把A(1,3)代入双曲线y=,可得k=1×3=3,
∴y与x之间的函数关系式为:y=;
(2)∵A(1,3),
∴当x>0时,不等式x+b>的解集为:x>1;
(3)y1=﹣x+4,令y=0,则x=4,
∴点B的坐标为(4,0),
把A(1,3)代入y2=x+b,可得3=+b,
∴b=,
∴y2=x+,
令y2=0,则x=﹣3,即C(﹣3,0),
∴BC=7,
∵AP把△ABC的面积分成1:3两部分,
∴CP=BC=,或BP=BC=
∴OP=3﹣=,或OP=4﹣=,
∴P(﹣,0)或(,0).
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
27、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).
【解析】
试题分析:把点的坐标代入即可求得抛物线的解析式.
作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数.
延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标.
试题解析:(1)由题意,得
解得.
∴这条抛物线的表达式为.
(2)作BH⊥AC于点H,
∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0),
∴AC=,AB=,OC=3,BC=.
∵,即∠BAD=,
∴.
Rt△ BCH中,,BC=,∠BHC=90º,
∴.
又∵∠ACB是锐角,∴.
(3)延长CD交x轴于点G,
∵Rt△ AOC中,AO=1,AC=,
∴.
∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.
∴AG = CG.
∴.
∴AG=1.∴G点坐标是(4,0).
∵点C坐标是(0,3),∴.
∴ 解得,(舍).
∴点D坐标是
山东省青岛市即墨市2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份山东省青岛市即墨市2021-2022学年中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,若 || =-,则一定是,一、单选题等内容,欢迎下载使用。
山东省青岛即墨市达标名校2022年中考数学模拟精编试卷含解析: 这是一份山东省青岛即墨市达标名校2022年中考数学模拟精编试卷含解析,共23页。
2022年山东省青岛市即墨市中考联考数学试题含解析: 这是一份2022年山东省青岛市即墨市中考联考数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列函数中,二次函数是,关于的叙述正确的是,下列说法正确的是等内容,欢迎下载使用。