2022年山东省临清市重点中学中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是( )
A.a< B.a> C.a<﹣ D.a>﹣
2.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2
3.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A. B.
C. D.
4.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
5.下列运算正确的是( )
A.2a2+3a2=5a4 B.(﹣)﹣2=4
C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab
6.如图,直线AB∥CD,则下列结论正确的是( )
A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
7.下列几何体中,三视图有两个相同而另一个不同的是( )
A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)
8.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
9.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是( )
A.155° B.145° C.135° D.125°
10.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是( )
A.50和48 B.50和47 C.48和48 D.48和43
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)
12.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.
13.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则 的值为_____.
14.分式方程+=1的解为________.
15.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
.
16.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.
三、解答题(共8题,共72分)
17.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
(1)画出△A1B1C1
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)在(2)的条件下求BC扫过的面积.
18.(8分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.
(1)请根据以上信息求出二次函数表达式;
(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
19.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点
(1)MN的长等于_______,
(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)
20.(8分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
21.(8分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.
(1)小张如何进货,使进货款恰好为1300元?
(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?
22.(10分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
23.(12分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
24.已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.
(1)试判断AB与⊙O的位置关系,并加以证明;
(2)若tanE=,⊙O的半径为3,求OA的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.
【详解】
解方程3x+2a=x﹣5得
x=,
因为方程的解为负数,
所以<0,
解得:a>﹣.
【点睛】
本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.
2、C
【解析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.
故答案为C
3、C
【解析】
分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
依题意得:,即.
故选C.
点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
4、C
【解析】
试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
故选C
考点:1、方差;2、平均数;3、中位数;4、众数
5、B
【解析】
根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.
【详解】
A. 2a2+3a2=5a2,故本选项错误;
B. (−)-2=4,正确;
C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;
D. 8ab÷4ab=2,故本选项错误.
故答案选B.
【点睛】
本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.
6、D
【解析】
分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
详解:如图,∵AB∥CD,
∴∠3+∠5=180°,
又∵∠5=∠4,
∴∠3+∠4=180°,
故选D.
点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
7、B
【解析】
根据三视图的定义即可解答.
【详解】
正方体的三视图都是正方形,故(1)不符合题意;
圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;
圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;
三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;
故选B.
【点睛】
本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.
8、C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
9、D
【解析】
解:∵
∴
∵EO⊥AB,
∴
∴
故选D.
10、A
【解析】
由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.
【详解】
由折线统计图,得:42,43,47,48,49,50,50,
7次测试成绩的众数为50,中位数为48,
故选:A.
【点睛】
本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、=.
【解析】
黄金分割点,二次根式化简.
【详解】
设AB=1,由P是线段AB的黄金分割点,且PA>PB,
根据黄金分割点的,AP=,BP=.
∴.∴S1=S1.
12、
【解析】
分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.
详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=•10π•1=10π(cm1).
故答案为10π.
点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).
13、
【解析】
根据二次函数的图象和性质结合三角形面积公式求解.
【详解】
解:设点横坐标为,则点纵坐标为,点B的纵坐标为 ,
∵BE∥x轴,
∴点F纵坐标为,
∵点F是抛物线上的点,
∴点F横坐标为,
∵轴,
∴点D纵坐标为,
∵点D是抛物线上的点,
∴点D横坐标为,
,
故答案为.
【点睛】
此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.
14、
【解析】
根据解分式方程的步骤,即可解答.
【详解】
方程两边都乘以,得:,
解得:,
检验:当时,,
所以分式方程的解为,
故答案为.
【点睛】
考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根.
15、-2<k<。
【解析】
由图可知,∠AOB=45°,∴直线OA的解析式为y=x,
联立,消掉y得,,
由解得,.
∴当时,抛物线与OA有一个交点,此交点的横坐标为1.
∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为().
∴交点在线段AO上.
当抛物线经过点B(2,0)时,,解得k=-2.
∴要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<.
【详解】
请在此输入详解!
16、20%.
【解析】
试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.
试题解析:依题意,有:100(1+x)2=144,
1+x=±1.2,
解得:x=20%或-2.2(舍去).
考点:一元二次方程的应用.
三、解答题(共8题,共72分)
17、(1)见解析;(2)见解析;(3).
【解析】
(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;
(2)根据图形旋转的性质画出旋转后的图形即可;
(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.
【详解】
解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,
∴△ABC向右平移6个单位,向上平移了一个单位,
∴A1(4,4),B1(2,0),C1(8,1);
顺次连接A1,B1,C1三点得到所求的△A1B1C1
(2)如图所示:△A2B2C即为所求三角形.
(3)BC的长为:
BC扫过的面积
【点睛】
本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
18、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.
【解析】
(1)利用二次函数解析式的顶点式求得结果即可;
(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.
【详解】
(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)
设二次函数表达式为:y=a(x﹣3)1﹣1.
∵该图象过A(1,0)
∴0=a(1﹣3)1﹣1,解得a=.
∴表达式为y=(x﹣3)1﹣1
(1)如图所示:
由已知条件可知直线与图形“G”要有三个交点
1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,
∴x3+x4+x5>11,
当直线过y=(x﹣3)1﹣1的图象顶点时,有1个交点,
由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)1+1,
∴令(x﹣3)1+1=﹣1时,解得x=3+1或x=3﹣1(舍去)
∴x3+x4+x5<9+1.
综上所述11<x3+x4+x5<9+1.
【点睛】
考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.
19、(1);(2)见解析.
【解析】
(1)根据勾股定理即可得到结论;
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.
【详解】
(1);
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P
【点睛】
本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.
20、(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元.
【解析】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.
【详解】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1﹣x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.
(2)根据题意得:[0.5×80(1+a%)﹣30]×10(1+2a%)=30000,
整理得:a2+75a﹣2500=0,
解得:a1=25,a2=﹣1(不合题意,舍去),
∴80(1+a%)=80×(1+25%)=1.
答:乙网店在“双十一”购物活动这天的网上标价为1元.
【点睛】
本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
21、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
【解析】
(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;
(2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.
【详解】
(1)设A种文具进货x只,B种文具进货只,由题意得:
,
解得:x=40,
,
答:A种文具进货40只,B种文具进货60只;
(2)设购进A型文具a只,则有,且;
解得:,
∵a为整数,
∴a=48、49、50,一共有三种购货方案;
利润,
∵,w随a增大而减小,
当a=48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
【点睛】
本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.
22、51.96米.
【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
【详解】
解:∵∠CBD=1°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=1.
在Rt△BDC中,
∴(米).
答:文峰塔的高度CD约为51.96米.
【点睛】
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
23、(1)见解析(2)不公平。理由见解析
【解析】
解:(1)画树状图得:
所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。
(2)这个游戏不公平。理由如下:
∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,
∴甲胜的概率为,乙胜的概率为。
∵甲胜的概率≠乙胜的概率,∴这个游戏不公平。
(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。
(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。
24、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.
【解析】
(1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;
(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.
【详解】
解:(1)AB与⊙O的位置关系是相切,
证明:如图,连接OC.
∵OA=OB,C为AB的中点,
∴OC⊥AB.
∴AB是⊙O的切线;
(2)∵ED是直径,
∴∠ECD=90°.
∴∠E+∠ODC=90°.
又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,
∴∠BCD=∠E.
又∵∠CBD=∠EBC,
∴△BCD∽△BEC.
∴.
∴BC2=BD•BE.
∵,
∴.
∴.
设BD=x,则BC=2x.
又BC2=BD•BE,
∴(2x)2=x(x+6).
解得x1=0,x2=2.
∵BD=x>0,
∴BD=2.
∴OA=OB=BD+OD=2+3=1.
【点睛】
本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
山东省滨州市卓越重点中学2022-2023学年中考数学适应性模拟试题含解析: 这是一份山东省滨州市卓越重点中学2022-2023学年中考数学适应性模拟试题含解析,共15页。
山东省聊城临清市重点中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份山东省聊城临清市重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列分式中,最简分式是等内容,欢迎下载使用。
山东省聊城临清市重点中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份山东省聊城临清市重点中学2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,若分式的值为零,则x的值是等内容,欢迎下载使用。