


2022年山东省青岛市沧口2中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )
A.20° B.30° C.45° D.50°
2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A.(0,) B.(0,) C.(0,2) D.(0,)
3.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是( )
A. B. C. D.
4.已知为单位向量,=,那么下列结论中错误的是( )
A.∥ B. C.与方向相同 D.与方向相反
5.若,,则的值是( )
A.2 B.﹣2 C.4 D.﹣4
6.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )
A. B. C. D.±
7.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为( ).
A.3 B. C. D.
8.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )
A.(0,) B.(,0) C.(0,2) D.(2,0)
9.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330
C.(1﹣10%)2x=330 D.(1+10%)x=330
10.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )
A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×109
二、填空题(本大题共6个小题,每小题3分,共18分)
11.两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为__________.
12.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)
13.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.
14.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.
15.分解因式:2a4﹣4a2+2=_____.
16.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.
三、解答题(共8题,共72分)
17.(8分)-()-1+3tan60°
18.(8分)解方程:
19.(8分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
(I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
(II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
(III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).
20.(8分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.
(1)设四边形PQCB的面积为S,求S与t的关系式;
(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
21.(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)请添加一个条件使四边形BEDF为菱形.
22.(10分)计算:|﹣1|+(﹣1)2018﹣tan60°
23.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据两直线平行,内错角相等计算即可.
【详解】
因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.
【点睛】
本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.
2、B
【解析】
解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).
∵D是OB的中点,∴D(﹣2,0).
设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为.当x=0时,y=,∴E(0,).故选B.
3、D
【解析】
连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.
【详解】
如图,连接AC、CF,
∵正方形ABCD和正方形CEFG中,BC=1,CE=3,
∴AC= ,CF=3,
∠ACD=∠GCF=45°,
∴∠ACF=90°,
由勾股定理得,AF=,
∵CH⊥AF,
∴,
即,
∴CH=.
故选D.
【点睛】
本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.
4、C
【解析】
由向量的方向直接判断即可.
【详解】
解:为单位向量,=,所以与方向相反,所以C错误,
故选C.
【点睛】
本题考查了向量的方向,是基础题,较简单.
5、D
【解析】
因为,所以,因为,故选D.
6、D
【解析】
根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组 ,求出方程组的解即可.
【详解】
解:设一次函数的解析式为:y=kx,
把点(−3,2a)与点(8a,−3)代入得出方程组 ,
由①得:,
把③代入②得: ,
解得:.
故选:D.
【点睛】
本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.
7、A
【解析】
连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.
【详解】
连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.
故选A.
【点睛】
本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.
8、A
【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
【详解】
如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OA×OB,
即OC2=1×3=3,
解得:OC=或− (负数舍去),
故C点的坐标为(0, ).
故答案选:A.
【点睛】
本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
9、D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
10、B
【解析】
试题分析: 15000000=1.5×2.故选B.
考点:科学记数法—表示较大的数
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
依据∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,进而得到△BFG∽△CHF,依据相似三角形的性质,即可得到=,即=,即可得到CH=.
【详解】
解:∵AG=1,BG=3,
∴AB=4,
∵△ABC是等腰直角三角形,
∴BC=4,∠B=∠C=45°,
∵F是BC的中点,
∴BF=CF=2,
∵△DEF是等腰直角三角形,
∴∠DFE=45°,
∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,
又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,
∴∠BGF=∠CFH,
∴△BFG∽△CHF,
∴=,即=,
∴CH=,
故答案为.
【点睛】
本题主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.
12、<
【解析】
先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.
【详解】
由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,
∵1<x1<1,3<x1<4,
∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,
∴y1<y1.
故答案为<.
13、
【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.
【详解】
正△A1B1C1的面积是,
而△A2B2C2与△A1B1C1相似,并且相似比是1:2,
则面积的比是,则正△A2B2C2的面积是×;
因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;
依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.
所以第8个正△A8B8C8的面积是×()7=.
故答案为.
【点睛】
本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.
14、
【解析】
根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.
【详解】
解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),
如图2,∵△ABC,△DEF都为正三角形,
∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,
,
∴△AEF≌△CFD(AAS);
同理可证:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
设M是△AEF的内心,过点M作MH⊥AE于H,
则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH•tan30°=(a-b)•=
故答案为:.
【点睛】
本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.
15、1(a+1)1(a﹣1)1.
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,
故答案为:1(a+1)1(a﹣1)1
【点睛】
本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.
16、1.
【解析】
根据立体图形画出它的主视图,再求出面积即可.
【详解】
主视图如图所示,
∵主视图是由1个棱长均为1的正方体组成的几何体,
∴主视图的面积为1×12=1.
故答案为:1.
【点睛】
本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.
三、解答题(共8题,共72分)
17、0
【解析】
根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算.
【详解】
原式=-2+2--2+3=0.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.
18、x=-4是方程的解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
∴x=-4,
当x=-4时,
∴x=-4是方程的解
【点睛】
本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
19、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
(Ⅲ)P().
【解析】
(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
(Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
【详解】
(Ⅰ)如图①中,作DH⊥BC于H,
∵△AOB是等边三角形,DC∥OA,
∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
∴△CDB是等边三角形,
∵CB=2,DH⊥CB,
∴CH=HB=,DH=3,
∴D(6﹣,3),
∵C′B=3,
∴CC′=2﹣3,
∴DD′=CC′=2﹣3,
∴D′(3+,3).
(Ⅱ)当BB'=时,四边形MBND'是菱形,
理由:如图②中,
∵△ABC是等边三角形,
∴∠ABO=60°,
∴∠ABB'=180°﹣∠ABO=120°,
∵BN是∠ACC'的角平分线,
∴∠NBB′'=∠ABB'=60°=∠D′C′B,
∴D'C'∥BN,∵AB∥B′D′
∴四边形MBND'是平行四边形,
∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
∴△MC′B'和△NBB'是等边三角形,
∴MC=CE',NC=CC',
∵B'C'=2,
∵四边形MBND'是菱形,
∴BN=BM,
∴BB'=B'C'=;
(Ⅲ)如图连接BP,
在△ABP中,由三角形三边关系得,AP<AB+BP,
∴当点A,B,P三点共线时,AP最大,
如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
∴CP=3,
∴AP=6+3=9,
在Rt△APD'中,由勾股定理得,AD'==2.
此时P(,﹣).
【点睛】
此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
20、 (1) S=﹣2(0<t<1); (2) ;(3)见解析.
【解析】
(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
【详解】
解:(1)如图1,∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
∴∠OAB=30°,
∵AB=20,
∴OB=10,AO=10,
由题意得:AP=4t,
∴PQ=2t,AQ=2t,
∴S=S△ABC﹣S△APQ,
=,
= ,
=﹣2t2+100(0<t<1);
(2)如图2,在Rt△APM中,AP=4t,
∵点Q关于O的对称点为M,
∴OM=OQ,
设PM=x,则AM=2x,
∴AP=x=4t,
∴x=,
∴AM=2PM=,
∵AM=AO+OM,
∴=10+10﹣2t,
t=;
答:当t为秒时,点P、M、N在一直线上;
(3)存在,
如图3,∵直线PN平分四边形APMN的面积,
∴S△APN=S△PMN,
过M作MG⊥PN于G,
∴ ,
∴MG=AP,
易得△APH≌△MGH,
∴AH=HM=t,
∵AM=AO+OM,
同理可知:OM=OQ=10﹣2t,
t=10=10﹣2t,
t=.
答:当t为秒时,使得直线PN平分四边形APMN的面积.
【点睛】
考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
21、见解析
【解析】
(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.
【详解】
(1)∵四边形ABCD是平行四边形,O是BD的中点,
∴AB∥DC,OB=OD,
∴∠OBE=∠ODF,
又∵∠BOE=∠DOF,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)EF⊥BD.
∵四边形BEDF是平行四边形,
∵EF⊥BD,
∴平行四边形BEDF是菱形.
【点睛】
本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.
22、1
【解析】
原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.
【详解】
|﹣1|+(﹣1)2118﹣tan61°
=﹣1+1﹣
=1.
【点睛】
本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.
23、(1)证明见解析;(2)证明见解析;(3)4.
【解析】
试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.
点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
24、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
2023年山东省青岛市高新区中考数学模拟预测题(原卷版+解析版): 这是一份2023年山东省青岛市高新区中考数学模拟预测题(原卷版+解析版),文件包含2023年山东省青岛市高新区中考数学模拟预测题原卷版docx、2023年山东省青岛市高新区中考数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
山东省青岛市沧口2中学2023-2024学年九上数学期末检测模拟试题含答案: 这是一份山东省青岛市沧口2中学2023-2024学年九上数学期末检测模拟试题含答案,共6页。试卷主要包含了一组数据等内容,欢迎下载使用。
山东省青岛市第九中学2022年中考数学模拟预测题含解析: 这是一份山东省青岛市第九中学2022年中考数学模拟预测题含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。