苏科版5.5 用二次函数解决问题学案及答案
展开二次函数简单应用
待定系数法与方程
一、课堂导入
二、知识梳理
三、典例精讲
例1、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.
;
例2、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.
(1) 求二次函数的图象的解析式;
(2) 设二次函数的顶点为P,求△ABP的面积.
例3、如图,直线交轴于点A,交轴于点B,过A,B两点的抛物线交轴于另一点C(3,0),
(1)求该抛物线的解析式;
⑵ 在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
四、巩固练习
五、课堂总结
二次函数的三种表达形式?
二次函数应用
一、课堂导入
水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤。通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤。为了保证每天至少售出260斤,张阿姨决定降价销售。
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
二、知识梳理
1、利润问题 2、面积问题 3、建立模型
(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).
(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.
(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.
(4)按题目要求,结合二次函数的性质解答相应的问题。
(5)检验所得解是否符合实际:即是否为所提问题的答案.
(6)写出答案.
二、典例精讲
例1 商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件.
① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;
② 若商场每天要盈利 1200 元,每件应降价多少元?
③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
(1)y=(40-x) (20+2x)=-2x2+60x+800,(2)1200=-2x2+60x+800,x1=20,x2=10 ∵要扩大销售 ∴x取20元,(3)y=-2 (x2-30x)+800=-2 (x-15)2+1250 ∴当每件降价15元时,盈利最大为1250元;
例2 用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?
,当x=1时,透光面积最大为m2
例3 有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m,跨度为 10m,如图所示,把它的图形放在直角坐标系中.
①求这条抛物线所对应的函数关系式.
②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?
(1)设y=a (x-5)2+4,0=a (-5)2+4,a=-,∴y=- (x-5)2+4,(2)当x=6时,y=-+4=3.4(m);
三、巩固练习
1.关于x的一元二次方程的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是 .
2. 某大学的校门如图所示,是抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,你能计算出大学校门的高吗?
3、某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)。
4、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第 x 年维修、保养费累计为 y(万元),且 y=ax2+bx,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.
5、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度 y (m) 与水平距离 x (m) 之间的函数关系式为 y=-x2+x+,求小明这次试掷的成绩及铅球的出手时的高度.
6、 有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.
(1)在如图所示的直角坐标系中,求出该抛物线的解析式.
(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d表示h的函数关系式;
(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?
7、某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单元:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义.
(2)求线段AB所表示的y1与x之间的函数表达式.
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
综合练习
一、课堂导入
1、二次函数应用的题型:利润问题 面积问题 建立模型
2、a、b、c与二次函数的关系
二、知识梳理
二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.
(6)由对称轴公式x=,可确定2a+b的符号.
三、典例精讲
例1 某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
变式 如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm,S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积.
例2 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:
①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).
其中正确的个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
变式 函数y=x2+bx+c与y=x的图象如图,有以下结论:
①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确结论的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
三、巩固练习
1、如图2,有一块形状是直角梯形的铁皮ABCD,它的上底AD=3cm,下底BC=8cm,垂直于底的腰CD=6cm.现要裁成一块矩形铁皮MPCN,使它的顶点M、P、N分别在AB、BC、CD上.当MN是多长时,矩形MPCN的面积有最大值?
2、如图3,有一块铁皮,拱形边缘呈抛物线状,MN=4dm,抛物线顶点到MN的距离是4dm.要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在MN上,A、D落在抛物线上,试问这样截下的矩形铁皮周长能否等于8dm?
3、在一直角三角形中建造一个内接于△ABC的矩形水池DEFN.其中DE在AB上,AC=8,BC=6.
(1)求△ABC中AB边上的高h;(2)设DN=x,当x取何值时,水池DEFN的面积最大?
(3)实际施工时,发现在AB上距B点1.85处有一棵大树,问这棵大树是否位于最大矩形水池的边上?
4.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
x(10万元) | 0 | 1 | 2 | … |
y | 1 | 1.5 | 1.8 | … |
(1)求y与x的函数表达式;
(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x(10万元)函数表达式;
(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?
5.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.
其中说法正确的是( )
| A. | ①② | B. | ②③ | C. | ②③④ | D. | ①②④ |
|
|
|
|
|
|
|
|
|
6.如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是( )
| A. | m>2 | B. | m<3
| C. | m>3 | D. | 2<m<3 |
7.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:
①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.
其中正确结论的个数是( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
8.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与
y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:
①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.
其中正确的是( )
| A. | ①② | B. | ③④ | C. | ①③ | D. | ①③④ |
9.已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为( )
①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
数学九年级下册5.2 二次函数的图象和性质学案设计: 这是一份数学九年级下册5.2 二次函数的图象和性质学案设计
苏科版九年级下册5.1 二次函数导学案及答案: 这是一份苏科版九年级下册5.1 二次函数导学案及答案,共6页。学案主要包含了教学目标,知识梳理,典型例题,巩固提高等内容,欢迎下载使用。
二次函数学案无答案: 这是一份二次函数学案无答案,共16页。学案主要包含了题型点拨,疑难点拨等内容,欢迎下载使用。