2022年中考数学考点讲练考点07不等式与不等式组
展开
考点07 不等式与不等式组
一、不等式的概念、性质及解集表示
1.不等式
一般地,用符号“”(或“≥”)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解.
2.不等式的基本性质
理论依据
式子表示
性质1
不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变
若,则
性质2
不等式两边同时乘以(或除以)同一个正数,不等号的方向不变
若,,则或
性质3
不等式两边同时乘以(或除以)同一个负数,不等号的方向改变
若,,则或
温馨提示:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.
3.不等式的解集及表示方法
(1)不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解集.
(2)不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.
二、一元一次不等式及其解法
1.一元一次不等式
不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.
2.解一元一次不等式的一般步骤
解一元一次不等式的一般步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).
三、一元一次不等式组及其解法
1.一元一次不等式组
一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一元一次不等式组.
2.一元一次不等式组的解集
一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组.
3.一元一次不等式组的解法
先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解.
4.几种常见的不等式组的解集
设,,是常数,关于的不等式组的解集的四种情况如下表所示(等号取不到时在数轴上用空心圆点表示):
不等式组
(其中)
数轴表示
解集
口诀
同大取大
同小取小
大小、小大中间找
无解
大大、小小取不了
考情总结:一元一次不等式(组)的解法及其解集表示的考查形式如下:
(1)一元一次不等式(组)的解法及其解集在数轴上的表示;
(2)利用一次函数图象解一元一次不等式;
(3)求一元一次不等式组的最小整数解;
(4)求一元一次不等式组的所有整数解的和.
四、列不等式(组)解决实际问题
列不等式(组)解应用题的基本步骤如下:
①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.
考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.
考向一 不等式的定义及性质
(1)含有不等号的式子叫做不等式.
(2)不等式两边同乘以或除以一个相同的负数,不等号要改变方向,在运用中,往往会因为忘记改变不等号方向而导致错误.
典例1 下列式子属于不等式的个数有
①>50;②3x=4;③–1>–2;④;⑤2x≠1.
A.1个 B.2个 C.3个 D.4个
【答案】C
【解析】∵(1)是不等式;(2)是等式;(3)是不等式;(4)是代数式(既不是等式,也不是不等式);(5)是不等式;∴上述式子中属于不等式的有3个.故选C.
【名师点睛】解答本题的要点有两点:(1)熟记不等式的定义:“用不等号表示不等关系的式子叫做不等式”;(2)熟记常见的5种不等号:.
典例2 下列不等式变形正确的是
A.由a>b,得ac>bc B.由a>b,得–2a>–2b
C.由a>b,得–a>–b D.由a>b,得a–2>b–2
【答案】D
【解析】A、由a>b,当cb–2,正确;
故选D.
【名师点睛】此题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
1.有下列数学表达式:①;②;③;④;⑤;⑥.其中是不等式的有
A.个 B.个 C.个 D.个
2.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:
(1)若a–b>0,则a__________b;
(2)若a–b=0,则a__________b;
(3)若a–b