2022年新疆乌鲁木齐水磨沟区四校联考中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )
A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
2.下列计算正确的是( )
A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=2
3.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
A. B. C. D.3
4.下列计算正确的是( )
A. B. C. D.
5.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:
人数
2
3
4
1
分数
80
85
90
95
则得分的众数和中位数分别是( )
A.90和87.5 B.95和85 C.90和85 D.85和87.5
6.如图,是一个工件的三视图,则此工件的全面积是( )
A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
7.下列各式中,正确的是( )
A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
8.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
A. B. C. D.
9.一个多边形的每个内角均为120°,则这个多边形是( )
A.四边形 B.五边形 C.六边形 D.七边形
10.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )
A.8 B.6 C.4 D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.
12.已知二次函数中,函数y与x的部分对应值如下:
...
-1
0
1
2
3
...
...
10
5
2
1
2
...
则当时,x的取值范围是_________.
13.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .
14.计算:的值是______________.
15.计算:|﹣5|﹣=_____.
16.若x=-1, 则x2+2x+1=__________.
三、解答题(共8题,共72分)
17.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
将条形统计图补充完整;
该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.
18.(8分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类
A
B
C
D
E
F
上学方式
电动车
私家车
公共交通
自行车
步行
其他
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
19.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
(1)请你补全条形统计图;
(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;
(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
20.(8分)如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.
求证:四边形是平行四边形.若,,则在点的运动过程中:
①当______时,四边形是矩形;
②当______时,四边形是菱形.
21.(8分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
(1)求该反比例函数的解析式.
(2)求S与t的函数关系式;并求当S=时,对应的t值.
(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.
22.(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);
(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
23.(12分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.
(1)当m为何值时,方程有两个不相等的实数根;
(2)当m为何整数时,此方程的两个根都为负整数.
24.如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.
如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.
(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;
(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
∴a+b<1,ab<1,a﹣b<1,a÷b<1.
故选:C.
2、B
【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。
【详解】
A. ,故A选项错误。
B. ,故B选项正确。
C.,故C选项错误。
D. ,故D选项错误。
故答案选B.
【点睛】
本题考查整式加减乘除运算法则,只需熟记法则与公式即可。
3、B
【解析】
根据勾股定理和三角函数即可解答.
【详解】
解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
设a=x,则c=3x,b==2x.
即tanA==.
故选B.
【点睛】
本题考查勾股定理和三角函数,熟悉掌握是解题关键.
4、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
5、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.
解:在这一组数据中90是出现次数最多的,故众数是90;
排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;
故选:A.
“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、C
【解析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
【详解】
圆锥的底面圆的直径为12cm,高为8cm,
所以圆锥的母线长==10,
所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
故答案选C.
【点睛】
本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
7、B
【解析】
A.括号前是负号去括号都变号;
B负次方就是该数次方后的倒数,再根据前面两个负号为正;
C. 两个负号为正;
D.三次根号和二次根号的算法.
【详解】
A选项,﹣(x﹣y)=﹣x+y,故A错误;
B选项, ﹣(﹣2)﹣1=,故B正确;
C选项,﹣,故C错误;
D选项,22,故D错误.
【点睛】
本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
8、C
【解析】
分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.
解答:解:根据题意:2500000=2.5×1.
故选C.
9、C
【解析】
由题意得,180°(n-2)=120°,
解得n=6.故选C.
10、A
【解析】
试题解析:由于点A、B在反比例函数图象上关于原点对称,
则△ABC的面积=2|k|=2×4=1.
故选A.
考点:反比例函数系数k的几何意义.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题解析:305000用科学记数法表示为:
故答案为
12、0
根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.
【详解】
由表可知,二次函数的对称轴为直线x=2,
所以,x=4时,y=5,
所以,y<5时,x的取值范围为0
此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.
13、3.55×1.
【解析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
【详解】
3550000=3.55×1,
故答案是:3.55×1.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
14、-1
【解析】
解:=-1.故答案为:-1.
15、1
【解析】
分析:直接利用二次根式以及绝对值的性质分别化简得出答案.
详解:原式=5-3
=1.
故答案为1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
16、2
【解析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
【详解】
∵x=-1,
∴x2+2x+1=(x+1)2=(-1+1)2=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
三、解答题(共8题,共72分)
17、(1)100,108°;(2)答案见解析;(3)600人.
【解析】
(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.
【详解】
解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
∴此次共抽查了:20÷20%=100人.
喜欢用QQ沟通所占比例为:,
∴QQ的扇形圆心角的度数为:360°×=108°.
(2)喜欢用短信的人数为:100×5%=5人
喜欢用微信的人数为:100-20-5-30-5=40
补充图形,如图所示:
(3)喜欢用微信沟通所占百分比为:×100%=40%.
∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
18、 (1)450、63; ⑵36°,图见解析; (3)2460 人.
【解析】
(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.
(2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;
(3)由总人数乘以“绿色出行”的百分比,即可得到结果.
【详解】
(1) 参与本次问卷调查的学生共有:(人);
选择类的人数有:
故答案为450、63;
(2)类所占的百分比为:
类对应的扇形圆心角的度数为:
选择类的人数为:(人).
补全条形统计图为:
(3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
19、(1)详见解析;(2)72°;(3)
【解析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
(2)用360°乘以C类别人数所占比例即可得;
(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
【详解】
解:(1)∵ 抽 查的总人数为:(人)
∴ 类人数为:(人)
补全条形统计图如下:
(2)“碳酸饮料”所在的扇形的圆心角度数为:
(3)设男生为、,女生为、、,
画树状图得:
∴恰好抽到一男一女的情况共有12 种,分别是
∴ (恰好抽到一男一女).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20、 (1)、证明过程见解析;(2)、①、2;②、1.
【解析】
(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.
【详解】
(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,
∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,
∴△EBF≌△DCF(AAS), ∴DC=BE, ∴四边形BECD是平行四边形;
(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;
∴∠ECB=30°,∴BE=BC=2,
②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,
∴△CBE是等边三角形,∴BE=BC=1.
【点睛】
本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.
21、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
【解析】
(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
【详解】
解:(1)∵正方形OABC的面积为9,
∴点B的坐标为:(3,3),
∵点B在反比例函数y=(k>0,x>0)的图象上,
∴3=,
即k=9,
∴该反比例函数的解析式为:y= y=(x>0);
(2)根据题意得:P(t,),
分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
若S=,
则﹣3t+9=,
解得:t=;
②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
若S=,则9﹣=,
解得:t=6;
∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
当S=时,对应的t值为或6;
(3)存在.
若OB=BF=3,此时CF=BC=3,
∴OF=6,
∴6=,
解得:t=;
若OB=OF=3,则3=,
解得:t= ;
若BF=OF,此时点F与C重合,t=3;
∴当t=或或3时,使△FBO为等腰三角形.
【点睛】
此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
22、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
23、 (1) m≠1且m≠;(2) m=-1或m=-2.
【解析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;
(2) 解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.
【详解】
解:(1) △=-4ac=(3m-2)+24m=(3m+2)≥1
当m≠1且m≠时,方程有两个不相等实数根.
(2)解方程,得:,,
m为整数,且方程的两个根均为负整数,
m=-1或m=-2.
m=-1或m=-2时,此方程的两个根都为负整数
【点睛】
本题主要考查利用一元二次方程根的情况求参数.
24、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.
【解析】
(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;
【详解】
(1)∵共有1种等可能的结果,落回到圈A的只有1种情况,
∴落回到圈A的概率P1=;
(2)列表得:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),
∴最后落回到圈A的概率P2==,
∴她与嘉嘉落回到圈A的可能性一样.
【点睛】
此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.
2023年新疆乌鲁木齐市水磨沟区中考数学适应性试卷(含解析): 这是一份2023年新疆乌鲁木齐市水磨沟区中考数学适应性试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
新疆乌鲁木齐水磨沟区四校联考2022年毕业升学考试模拟卷数学卷含解析: 这是一份新疆乌鲁木齐水磨沟区四校联考2022年毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示,如图,AB∥CD,那么等内容,欢迎下载使用。
新疆乌鲁木齐市沙依巴克区重点中学2022年中考押题数学预测卷含解析: 这是一份新疆乌鲁木齐市沙依巴克区重点中学2022年中考押题数学预测卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列各式中的变形,错误的是等内容,欢迎下载使用。