2022年上海市松江区达标名校中考数学考试模拟冲刺卷含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在平面直角坐标系中,点P(m﹣3,2﹣m)不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A.B.C.D.
3.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
4.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )
A.众数B.中位数C.平均数D.方差
5.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75°B.60°C.55°D.45°
6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34°B.56°C.66°D.54°
7.在实数﹣3.5、、0、﹣4中,最小的数是( )
A.﹣3.5B.C.0D.﹣4
8.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )
A.一直增大B.一直减小C.先减小后增大D.先增大后减小
9.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )
A. B.
C. D.
10.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( )
A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米
二、填空题(共7小题,每小题3分,满分21分)
11.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.
12.如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是______海里(结果精确到个位,参考数据:,,)
13.化简代数式(x+1+)÷,正确的结果为_____.
14.已知函数y=-1,给出一下结论:
①y的值随x的增大而减小
②此函数的图形与x轴的交点为(1,0)
③当x>0时,y的值随x的增大而越来越接近-1
④当x≤时,y的取值范围是y≥1
以上结论正确的是_________(填序号)
15.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.
16.Rt△ABC中,AD为斜边BC上的高,若, 则 .
17.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.
19.(5分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.
20.(8分)计算﹣14﹣
21.(10分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC.
(1)求证:四边形ABCD是矩形;
(1)若△GEF的面积为1.
①求四边形BCFE的面积;
②四边形ABCD的面积为 .
22.(10分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径;
(3)在(2)的条件下,若点B等分半圆CD,求DE的长.
23.(12分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.
24.(14分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分点P的横坐标是正数和负数两种情况讨论求解.
【详解】
①m-3>0,即m>3时,
2-m<0,
所以,点P(m-3,2-m)在第四象限;
②m-3<0,即m<3时,
2-m有可能大于0,也有可能小于0,
点P(m-3,2-m)可以在第二或三象限,
综上所述,点P不可能在第一象限.
故选A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
3、A
【解析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
4、B
【解析】
解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
故选B.
【点睛】
本题考查统计量的选择,掌握中位数的意义是本题的解题关键.
5、B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
【点睛】
本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
6、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
7、D
【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可
【详解】
在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.
【点睛】
掌握实数比较大小的法则
8、C
【解析】
如图所示,连接CM,
∵M是AB的中点,
∴S△ACM=S△BCM=S△ABC,
开始时,S△MPQ=S△ACM=S△ABC;
由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC;
结束时,S△MPQ=S△BCM=S△ABC.
△MPQ的面积大小变化情况是:先减小后增大.故选C.
9、D
【解析】
试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得
.
故选D.
考点:由实际问题抽象出二元一次方程组
10、D
【解析】
解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.
故选D.
点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).
二、填空题(共7小题,每小题3分,满分21分)
11、SSS.
【解析】
由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.
【详解】
由图可知,CM=CN,又OM=ON,
∵在△MCO和△NCO中
,
∴△COM≌△CON(SSS),
∴∠AOC=∠BOC,
即OC是∠AOB的平分线.
故答案为:SSS.
【点睛】
本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.
12、1
【解析】
作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.
【详解】
∠CBA=25°+50°=75°,
作BD⊥AC于点D,
则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,
∠ABD=30°,
∴∠CBD=75°﹣30°=45°,
在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,
在直角△BCD中,∠CBD=45°,
则BC=BD=10×=10≈10×2.4=1(海里),
故答案是:1.
【点睛】
本题考查了解直角三角形的应用——方向角问题,正确求得∠CBD以及∠CAB的度数是解决本题的关键.
13、2x
【解析】
根据分式的运算法则计算即可求解.
【详解】
(x+1+)÷
=
=
=2x.
故答案为2x.
【点睛】
本题考查了分式的混合运算,熟知分式的混合运算顺序及运算法则是解答本题的关键.
14、②③
【解析】
(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;
(2)由解得:,
∴的图象与x轴的交点为(1,0),故②中结论正确;
(3)由可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;
(4)因为在中,当时,,故④中结论错误;
综上所述,正确的结论是②③.
故答案为:②③.
15、
【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【详解】
∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,
∴从袋子中随机取出1个球,则它是黑球的概率是:
故答案为:.
【点睛】
本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.
16、
【解析】
利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.
【详解】
如图,
∵∠CAB=90°,且AD⊥BC,
∴∠ADB=90°,
∴∠CAB=∠ADB,且∠B=∠B,
∴△CAB∽△ADB,
∴(AB:BC)1=△ADB:△CAB,
又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,
∴AB:BC=1:1.
17、3
【解析】
【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.
【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,
∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,
∴EF=BC=3,AE=AB,
∵DE=EF,
∴AD=DE=3,
∴AE==3,
∴AB=3,
故答案为3.
【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.
三、解答题(共7小题,满分69分)
18、证明见解析.
【解析】
【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.
【详解】∵AB∥CD,∴∠A=∠D,
∵CE∥BF,∴∠AHB=∠DGC,
在∆ABH和∆DCG中,
,
∴∆ABH≌∆DCG(AAS),∴AH=DG,
∵AH=AG+GH,DG=DH+GH,∴AG=HD.
【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
19、原计划每天安装100个座位.
【解析】
根据题意先设原计划每天安装x个座位,列出方程再求解.
【详解】
解:设原计划每天安装个座位,采用新技术后每天安装个座位,
由题意得:.
解得:.
经检验:是原方程的解.
答:原计划每天安装100个座位.
【点睛】
此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.
20、1
【解析】
直接利用绝对值的性质以及二次根式的性质分别化简得出答案.
【详解】
原式=﹣1﹣4÷+27
=﹣1﹣16+27
=1.
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握运算顺序.
21、(1)证明见解析;(1)①16;②14;
【解析】
(1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
(1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
【详解】
(1)证明:∵GB=GC,
∴∠GBC=∠GCB,
在平行四边形ABCD中,
∵AD∥BC,AB=DC,AB∥CD,
∴GB-GE=GC-GF,
∴BE=CF,
在△ABE与△DCF中,
,
∴△ABE≌△DCF,
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=∠D=90°,
∴四边形ABCD是矩形;
(1)①∵EF∥BC,
∴△GFE∽△GBC,
∵EF=AD,
∴EF=BC,
∴,
∵△GEF的面积为1,
∴△GBC的面积为18,
∴四边形BCFE的面积为16,;
②∵四边形BCFE的面积为16,
∴(EF+BC)•AB=×BC•AB=16,
∴BC•AB=14,
∴四边形ABCD的面积为14,
故答案为:14.
【点睛】
本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.
22、(1)证明见解析;(2);(3);
【解析】
(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2
∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,
于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;
(2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;
(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设
DH=x,则DE=2x,所以 然后求出x即可
得到DE的长.
【详解】
(1)证明:连接OA、AD,如图,
∵∠B=2∠P,∠B=∠ADC,
∴∠ADC=2∠P,
∵AP=AC,
∴∠P=∠ACP,
∴∠ADC=2∠ACP,
∵CD为直径,
∴∠DAC=90°,
∴∠ADC=60°,∠C=30°,
∴△ADO为等边三角形,
∴∠AOP=60°,
而∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥PA,
∴PA是⊙O的切线;
(2)解:在Rt△OAP中,∵∠P=30°,
∴OP=2OA,
∴
∴⊙O的直径为;
(3)解:作EH⊥AD于H,如图,
∵点B等分半圆CD,
∴∠BAC=45°,
∴∠DAE=45°,
设DH=x,
在Rt△DHE中,DE=2x,
在Rt△AHE中,
∴
即
解得
∴
【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
23、见解析
【解析】
(1)如图:
(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.
24、BD= 2.
【解析】
试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.
试题解析:
∵∠ACD=∠ABC,
又∵∠A=∠A,
∴△ABC∽△ACD ,
∴,
∵AC=,AD=1,
∴,
∴AB=3,
∴BD= AB﹣AD=3﹣1=2 .
点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.
上海市松江区达标名校2022年中考数学考前最后一卷含解析: 这是一份上海市松江区达标名校2022年中考数学考前最后一卷含解析,共22页。试卷主要包含了答题时请按要求用笔,内角和为540°的多边形是等内容,欢迎下载使用。
2022年上海市金山区名校中考数学考试模拟冲刺卷含解析: 这是一份2022年上海市金山区名校中考数学考试模拟冲刺卷含解析,共23页。
2022年广东珠海市香洲区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年广东珠海市香洲区重点达标名校中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了答题时请按要求用笔,已知等内容,欢迎下载使用。